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Abstract

Motivation: Network propagation has been widely used to aggregate and amplify the effects of

tumor mutations using knowledge of molecular interaction networks. However, propagating muta-

tions through interactions irrelevant to cancer leads to erosion of pathway signals and complicates

the identification of cancer subtypes.

Results: To address this problem we introduce a propagation algorithm, Network-Based Supervised

Stratification (NBS2), which learns the mutated subnetworks underlying tumor subtypes using a

supervised approach. Given an annotated molecular network and reference tumor mutation profiles

for which subtypes have been predefined, NBS2 is trained by adjusting the weights on interaction

features such that network propagation best recovers the provided subtypes. After training, weights

are fixed such that mutation profiles of new tumors can be accurately classified. We evaluate NBS2

on breast and glioblastoma tumors, demonstrating that it outperforms the best network-based

approaches in classifying tumors to known subtypes for these diseases. By interpreting the inter-

action weights, we highlight characteristic molecular pathways driving selected subtypes.

Availability and implementation: The NBS2 package is freely available at: https://github.com/

wzhang1984/NBSS.

Contact: wzhang1984@gmail.com or tideker@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Cancer Genome Atlas (TCGA) and International Cancer

Genome Consortium (ICGC) have recently used exome or genome-

wide DNA sequencing to construct very large catalogs of somatic

mutations found in tumors of many types (International Cancer

Genome Consortium et al., 2010; Weinstein et al., 2013). Analysis

of these data has shown the striking observation that, while a few

genes are mutated frequently in cancer, most mutations fall in genes

which are mutated quite rarely. That is, the somatic mutation pro-

files of tumors are fundamentally heterogeneous, with few common-

alities and many differences found among and within different

cancers.

A popular approach to interpret and reduce this heterogeneity

has been to aggregate tumor mutations in the context of molecular

networks. Various approaches have been developed based on this

principle, including identification of subnetworks that aggregate

mutations in different genes across a cohort (e.g. HotNet2)

(Leiserson et al., 2015a; Ruffalo et al., 2015; Horn et al., 2018;

Miller et al., 2011; Creixell et al., 2015b; Bertrand et al., 2015) or

identification of tumor subtypes (e.g. network-based stratification,

aka NBS) (Hofree et al., 2013; Kim et al., 2016; Jin et al., 2015;

Gaiteri et al., 2015; Cho et al., 2016). The core algorithm of these

methods is network propagation (Cowen et al., 2017), which uses a

random walk (Pearson, 1905) model to diffuse information about

gene mutations through network interactions. The rationale of this

approach is that genetic alterations affecting two different, but inter-

acting, genes have an elevated likelihood of yielding the same func-

tional and phenotypic outcomes. The result of network propagation

is typically to generate a score for each gene that captures its net-

work proximity to genes with somatic mutations.

While such methods are promising, they face a variety of open

challenges, many related to how best to detect the subnetworks

(pathways) affected by mutations. In particular, the above network

propagation approaches rely on reference molecular networks in the

public domain which are neither tissue-specific nor cancer-specific.

Propagating mutations through gene interactions not present in can-

cer cells can cause erroneous aggregation of passenger mutations as

well as contamination of characteristic pathway signals, leading to

poor tumor subtype stratification. Therefore, it is important to dis-

tinguish between interactions that are functional in tumor cells and

those that are not, particularly in light of recent studies showing that
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tumor cells rewire numerous molecular interactions during cell pro-

liferation and clonal expansion (Li et al., 2017; Wu et al., 2009;

AlQuraishi et al., 2014; Creixell et al., 2015c; Creixell et al.,

2015a).

Here, we develop Network-Based Supervised Stratification

(NBS2), a general framework that extends the Supervised Random

Walk algorithm (Backstrom and Leskovec, 2010) with a novel loss

function designed specifically for cancer subtype classification.

Similar to other cancer network approaches, network propagation is

a central component for aggregation of mutations impacting the

same subnetwork regions. However, unlike previous approaches,

supervised learning is used to adjust the weight of each molecular

interaction, guiding the direction of propagation to maximize the

agreement among tumors of the same subtype. We demonstrate that

this new algorithm leads to improved performance in cancer subtype

stratification. Moreover, the highly weighted interactions outline

biological pathways that affiliate with the underlying cancer

subtypes.

2 Materials and methods

Supervised Random Walk (SRW) was originally proposed to recom-

mend interpersonal links in social networks (Backstrom and

Leskovec, 2010). From this work, we have borrowed the concept of

learning an activation score for each interaction in a gene network

used in the random walk process. The cost function used in super-

vised learning is designed specifically for cancer subtype classifica-

tion. In the following sections, we first describe the methodology for

the basic random walk algorithm and then extend it to a supervised

approach (Fig. 1).

2.1 Unsupervised tumor stratification based on random

walk
Given a graph G ¼< V;E >, where V is the node set representing

genes and E is the edge set representing molecular interactions, a

Random Walk with Restart (RWR) process (Hofree et al., 2013)

can be conducted iteratively as follows:

Pðtþ1Þ ¼ 1� að ÞP tð Þ �Qþ aPð0Þ (1)

Here Pð0Þ is a tumor-by-gene binary matrix (0¼wild type;

1¼mutated) representing the mutation profile of each tumor in a

cohort, and Q is the degree-normalized adjacency matrix of G. The

parameter a denotes the restart probability, governing the distance

that mutation signal is allowed to propagate through the network.

At convergence, when Pðtþ1Þ�PðtÞ, stationary random walk scores

PðtÞ represent a tumor-by-gene matrix, in which the mutation profile

of each tumor has been ‘smoothed’ by the network. The score of

each gene represents its network proximity to all genes with muta-

tions. PðtÞ is hereafter referred to as ‘propagated mutation profiles’.

Applying non-negative factorization to these propagated mutation

profiles has been shown to identify clinically meaningful tumor sub-

types (Hofree et al., 2013).

2.2 Supervised tumor classification based

on random walk
Within the above random walk framework, we introduce the

additional goal of learning a new type of adjacency matrix Q

directly from data, such that the stratification of propagated

mutation profiles after random walk is close to the pre-defined

tumor subtypes (Fig. 1 and Section 2.3). In particular, Q in

Equation (1) is replaced by a weighted transition matrix defined

as follows:

Qij ¼ d i; jð Þ 2 Eð Þ aijP
kaik

(2)

where d is an indicator function which equals 1 when satisfied and 0

otherwise. The parameter aij represents the activation score for the

molecular interaction between i and j and is defined as:

aij ¼
1

1þ expð�wT � xijÞ
(3)

Here aij is a sigmoid function of feature vector xij, which captures

characteristics of the interaction between gene i and j, such as type

of interaction (e.g. protein-protein, co-expression, kinase-substrate),

source database, whether mutations at i and j are mutually exclu-

sive, and so on (Section 2.6, Supplementary Table S1). The feature

weights vector w is learned in the training phase of the algorithm.

Note that, in practice we introduce an ‘intercept’ feature which is

held constant at 1 for all edges. Intuitively, the learned weight of

‘intercept’ determines the ‘default’ activation score of all edges. The

value of aij ranges from 0 to 1, with larger values signifying that mu-

tation signal is more likely to traverse edge (i, j) during random

walk. By normalizing aij across all nodes, each entry Qij defines the

probability that a random walk will traverse edge (i, j) given it is

currently at node i. However, such normalization has an unwanted

property: even if the model learns that aij should be close to 0 for all

network neighbors of i, the row vector Qi� still sums to 1. Therefore,

one can never truly remove all edges from node i. To overcome this

limitation, we add a self-loop edge to each node, marked by an add-

itional edge feature called ‘self-loop’. For each self-loop (i, i), all fea-

tures xii are set to 0 except for the ‘self-loop’ feature, which is set to 1.
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Fig. 1. NBS2 Workflow. NBS2 takes three input datasets, represented by red

arrows: (1) a molecular network where each edge is annotated by a feature

vector x , and each feature is assigned an initial weight w ; (2) a tumor-by-

gene matrix P ð0Þ representing the mutation profile of a cohort and (3) the

defined subtype of each tumor. In each iteration, NBS2 computes an activa-

tion score a for each edge (Equation 3), calculates a transition matrix Q

(Equation 2), performs a random walk (Equation 1), and computes the value

of the cost function JðwÞ (Equation 4). Training the classifier is conducted it-

eratively using gradient descent. To minimize Jðw Þ, the algorithm calculates

the gradient of JðwÞ with respect to the edge feature weights w using the

chain rule (Equations 7–11) and updates w accordingly. Upon convergence,

the algorithm outputs the final feature weights w , transition matrix Q and

propagated mutation profiles P , which together define the classification

model
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For all other edges (i, j), the ‘self-loop’ feature is set to 0. In this way,

the algorithm can learn whether a node should be isolated or con-

nected to others, by controlling the proportion of weight placed on

the ‘self-loop’ feature versus other features.

2.3 Cost function
Instead of directly predicting the subtype label, the NBS2 training

process learns the center of each subtype cluster from training data.

In the testing/validation phase, each patient sample is assigned to

one of these subtypes based on the shortest Euclidean distance to the

centers. In this way, the whole classification framework can be

viewed as a supervised clustering process.

Based on this rationale, a cost function is designed to find opti-

mal edge feature weights w such that the tumor classification error

based on the propagated mutation profiles P is minimized. The opti-

mization problem is defined as follows:

min
w

JðwÞ ¼ kkwk1 þ
Xm

u¼1

1

1þ expð�bDuÞ
(4)

Du ¼ kpu � cak2
2 �minb 6¼akpu � cbk2

2 (5)

where m is the total number of tumors; vector pu is row u of P, rep-

resenting the propagated mutation profile of all genes of tumor u; ca

is the centroid vector of the true subtype a of tumor u provided in

training data. It is defined as:

ca ¼
1

ma � 1

X
v2a; v6¼u

pv (6)

where ma is the number of tumors in subtype a. To avoid information

leak, in the training phase of the algorithm, pu is excluded from the

calculation of ca. The second term of Equation (5) calculates the short-

est distance to pu among all the other subtypes. The intuition of

Equations (4) and (5) is that we want the propagated mutation profile

of tumor u to be always closer to the centroid of its own subtype than

all the other subtypes. We found this objective function extremely

helpful when the centroids of two cancer subtypes are close to each

other. The sigmoid function in Equation (4) is used to scale the value

of Du between 0 and 1 to mimic the classification error for easier opti-

mization (Yan et al., 2003). That is, when tumor u is closer to an in-

correct subtype, which tends to drive Du � 0, the second term of

Equation (4) with respect to u is close to 1. In contrast, when tumor u

is close to its own subtype, the second term is close to 0. To improve

the interpretability of our model, we use the l1-norm to regulate model

complexity (first term of Equation 4), in which case k is the hyperpara-

meter used to control the sparsity of parameters. We also introduce a

hyperparameter b to control model nonlinearity. Large b increases the

model’s ability to describe the training data but also increases the risk

of overfitting. In practice, both b and k are tuned by cross validation.

2.4 Training the classification model
The objective function defined in Equations (4) and (5) is differenti-

able. Therefore, we used gradient descent to find its local optimum.

After calculating the gradient of each parameter, we then applied

Adam (Kingma and Ba, 2014) to minimize JðwÞ. The gradient of each

parameter is calculated using the chain rule. The partial derivative of

JðwÞ with respect to a particular feature weight wl is written as:

@JðwÞ
@wl

¼ sign wlð Þkþ
Xm
u¼1

bg wð Þ 1� g wð Þð Þ @Du

@wl
(7)

where g(w) is the second term of J(w) in Equation 4.

@Du

@wl
¼ 2ðpu � caÞT �

@Pu

@wl
� @ca

@wl

� �
� 2ðpu � cbÞT �

@Pu

@wl
� @cb

@wl

� �

(8)

Equation (8) indicates that calculating the gradient of the overall ob-

jective function first requires the gradient of matrix P, because c is

also a function of P. P is calculated through an iterative process until

convergence to hasten the training process (Equation 1). The partial

derivative of matrix P in Equation (1) with respect to wl can be cal-

culated using a similar iterative update process as follows:

@P

@wl
¼ 1� að Þ � @P

@wl
�Qþ P � @Q

@wl

� �
(9)

Equation (9) is executed iteratively until the gradient of P converges.

Each iteration requires the gradient of matrix Q:

@Qij

@wl
¼ d i; jð Þ 2 Eð Þ

@aij

@wl

P
kaik þ aij

P
k
@aik

@wl

ð
P

kaikÞ2
(10)

Here, d is an indicator function which equals to 1 when satisfied and

0 otherwise. Using the chain rule, the partial derivative of edge acti-

vation score aij with respect to weight wl is calculated as follows:

@aij

@wl
¼ xijlaij 1� aij

� �
(11)

2.5 Subtype prediction for new tumors
The classification model is defined by the final transition matrix Q,

parameterized by the final edge feature weights w, as well as the

centroids c of all subtypes calculated from the training data. Given a

new tumor z with mutation profile P
ð0Þ
z , our goal is to predict its sub-

type based on the Q and c learned previously by the model. First, a

propagated mutation profile Pz is calculated from P
ð0Þ
z , using ran-

dom walk based on Q (Equation 1). Then the subtype of z is pre-

dicted as follows:

s ¼ argmin
s2A

kpz � csk2
2 (12)

where A is the set of all subtypes, and s is the predicted subtype of z.

2.6 Edge features
To calculate the edge activation score (Equation 3), each edge is

annotated by a set of edge features. In particular, in the analysis of

real tumor mutation profiles (Sections 3.2 and 3.3), we designed 76

distinct interaction features (Supplementary Table S1) distributed

across nine categories:

• Interaction types (12 features, e.g. protein complex, transcrip-

tional regulation)
• Source databases (19 features, e.g. KEGG, CORUM; containing

interactions from different technologies and qualities of data and

curation)
• Cancer-related pathways (28 features, e.g. Wnt signaling)
• Mutual exclusivity of mutations to source and target (one

feature)
• Mutation rates of source and target genes (two features)
• Association between incidence of mutation and subtypes (two

features denote associations between source or target gene and

its most significantly associated subtype among all subtypes)
• Source or target gene is in top five most recurrently mutated

(10 features)
• Self-loop (one feature)

i486 W.Zhang et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/13/i484/5045745
by University of California, San Diego user
on 29 June 2018

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty247#supplementary-data
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: 1 
Deleted Text: 2 
Deleted Text: 2 
Deleted Text: 5 
Deleted Text: 1 


• Intercept (one feature, constant term inside the Equation (3) sig-

moid function)

All features were re-scaled to have similar range [0, 1], a common

technique used in machine learning (Bishop, 2007). In particular,

feature x is re-scaled to ðx�minðxÞÞ=ðmaxðxÞ �minðxÞÞ.

3 Results

In Section 3.1, we present the results of simulations to demonstrate

the effect of minimizing the cost function during training and, more

importantly, the intuition for why supervision is able to achieve

improved results in comparison to unsupervised random walk.

Next, in Sections 3.2 and 3.3, we apply the method to classify som-

atic mutation profiles of two major cancers cataloged in TCGA:

glioblastoma (GBM) and breast cancer (BRCA).

3.1 Experiments on simulated data
3.1.1 Simulated data

To demonstrate and benchmark the NBS2 algorithm, we simulated a

molecular interaction network, edge features, and a tumor-by-gene

matrix of mutation profiles where tumors belong to one of two sub-

types that are not immediately separable by mutation profiles or net-

work topology alone (Fig. 2A). Our goal was to recover these two

subtypes as well as to detect their characteristic subnetworks.

We simulated somatic mutation profiles with 100 tumors and

1000 genes and divided the tumors into two equal-sized subtypes.

Each subtype was assigned with 50 characteristic genes in the net-

work. For each tumor, a unique characteristic gene was mutated

(Fig. 2A); none of the two tumors shared the same characteristic

gene, so that the two subtypes were completely indiscernible based

on gene mutations. The characteristic genes were mutated with

probability 1.5% (median mutation rate in 22 types of cancer in

TCGA) among tumors within their respective subtype. Beyond

mutations on the characteristic genes, other genes were randomly

mutated with probability 1.5% to simulate passenger mutations in

cancer. Finally, to simulate the influence of frequently mutated

genes (FMG, e.g. TTN), we randomly assigned a gene with approxi-

mately 50% tumors mutated.

We simulated the molecular network used to guide the random

walk using an Erdos-Renyi model (Erdos and Renyi, 1959). On this

note, we found empirically that the particular method for generating

random interactions, preferential attachment (Albert and Barabási,

2002) or Erdos-Renyi, did not have a large effect on the analysis and

therefore chose a simpler model. Specifically, edges were randomly

generated with probability 11.4% among the 100 characteristic

genes and 0.4% for all other gene pairs, mimicking the connectivity

between known cancer genes (Vogelstein et al., 2013) and all other

genes, respectively. Note that to better illustrate our results, edge

density in Fig. 2B and C (70% for characteristic genes and 5% for

others) is much higher than that in the actual simulation.

For each edge in the simulated network, the activation score

(Equation 2) was determined by the following eight edge features:

two subtype features, which were set to 1 for the edges between

characteristic genes within the respective subtype, and 0 otherwise;

two FMG features representing the incoming and outgoing edges

from the FMG; two random features uniformly sampled from [0, 1];

a ‘self-loop’ feature as described above (Section 2.2); and an inter-

cept term which was held constant at 1 for all edges.

3.1.2 Results of the simulation

We first assessed the performance of unsupervised RWR on the

simulated dataset as a baseline. In this case, all edges were equally

activated, so a random walk had equal probability to traverse to all

neighbors of a specific node (Fig. 2B). Since the characteristic genes

were highly connected within and between both subtypes, the final

propagated mutation scores were evenly distributed across these

genes and the two subnetworks remained unrecognizable (Fig. 2D).

As a consequence, the unsupervised algorithm failed to recover the

two simulated subtypes (Fig. 2F, accuracy¼51.0% 6 4.6% in 10

simulations).

We next applied the NBS2 algorithm to the simulated dataset.

The supervised algorithm learned the underlying fact that the two

subtype-characteristic edge features are very important and thus as-

sign large positive weights to them (Table 1). Consequently, the two

subtype-characteristic subnetworks emerged because the edge acti-

vation scores within each of these subnetworks were boosted

(Fig. 2C). In contrast, the intercept term in the edge activation func-

tion was assigned a negative weight, which effectively removed
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Fig. 2. Experiments on simulated data. (A) Simulated mutation dataset including

characteristic genes of two subtypes (genes 1–10) and a Frequently Mutated

Gene (FMG) (gene 16). Mutated genes are shown in dark red and non-mutated

genes are shown in white. A reduced set of tumors and genes (10� 20) is shown

as an example; the full simulation is 100 � 1000. An edge-by-feature matrix is

also used as an input for the supervised random walk. (B) Unsupervised and

(C) supervised random walk of mutations over a simulated gene interaction net-

work. Shades of red show propagated mutation values for tumor sample #7.

(D, E) Propagated mutation profiles following (D) unsupervised and (E) super-

vised random walk. (F, G) Principal components analysis (PCA) of the full simula-

tion (100 � 1000) between (F) unsupervised random walk-based tumor

stratification and (G) supervised random walk-based tumor classification
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edges between the subtype-characteristic subnetworks (activation

score close to zero). All other edge features were typically assigned

weights close to zero due to the l1 regularization, indicating they

were not important in identifying the two subtypes. As a result,

the mutation signal was propagated far more avidly within

each subnetwork than between subnetworks (Fig. 2E). Overall,

our supervised random walk algorithm achieved nearly perfect

classification in recovering the two simulated subtypes (Fig. 2G,

accuracy¼91.5% 6 2.1% in 10 simulations).

To further study the robustness of this method, we randomly

flipped the subtype labels of either 10% or 20% of samples

(adding noisy/wrong information) and measured the prediction ac-

curacy. We found that accuracy dropped to 82.6% 6 2.7% and

73.0% 6 6.6%, respectively, in 10 simulations. Interestingly, the

edge feature weights were learned to have very similar values as

the original simulation (Pearson’s r of feature weights¼0.98 and

0.99, respectively). These results indicate our algorithm is robust es-

pecially in recovering the correct feature weights for network

propagation.

3.1.3 Choice of hyperparameters

We also used simulations to inform the choice of hyperparameters.

We found that the NBS2 algorithm was robust to the particular val-

ues of hyperparameter a, the random walk restart probability

(Equation 1), and k, the lasso regularization parameter (Equation 7).

We achieved very similar results when a was within a range of 0.15

to 0.5 and k was within a range of 0 to 0.2. However, we also noted

that the hyperparameter b in the loss function (Equation 7) was not

robust and needed to be fine-tuned for the algorithm to work prop-

erly; we achieved reasonable results in the range of 500–10 000.

Overall, the best classification performance was achieved with

a¼0.3, k¼0.1 and b¼5000. The performance of real tumor muta-

tion profiles with respect to different choices of hyperparameters

can be found in Supplementary Figure S1.

3.2 Classification of glioblastoma
Having benchmarked NBS2 in simulation, we next applied it to clas-

sify tumor mutation profiles from cancer patients. Glioblastoma

multiforme (GBM) is the most common brain cancer malignancy

diagnosed in adults. Affected patients have a very poor prognosis

with a median survival of one year (Ohgaki and Kleihues, 2005).

Widespread differences in gene expression and DNA methylation

have previously been reported in GBM, grouping GBM tumors into

five subtypes: Glioma-CpG Island Methylator Phenotype (G-CIMP),

Proneural, Neural, Classical and Mesenchymal (Verhaak et al.,

2010; Brennan et al., 2013). These subtypes have been shown to as-

sociate with distinct neural lineages, ages, prognoses and responses

to therapy. For instance, G-CIMP is associated with younger age of

diagnosis and better survival (Brennan et al., 2013); while the

Classical subtype is the most responsive to aggressive therapy

(Verhaak et al., 2010). Our goal here was to not only classify the

five GBM subtypes based on tumor mutation profiles, but also to

identify the underlying gene interactions driving such types on a ref-

erence molecular network.

3.2.1 Glioblastoma data processing

We collected and integrated somatic mutation and copy number al-

teration (CNA) data of 223 GBM tumors (Brennan et al., 2013) as

follows: A gene was considered altered if it had a non-silent somatic

mutation, if it was a well-defined oncogene or tumor suppressor

(Vogelstein et al., 2013), or if it fell within a CNA. We then divided

the tumors into a training set (150 tumors) and a validation set (73

tumors). As a reference molecular network we used Pathway

Commons (Cerami et al., 2011), documenting 968 186 pairwise

relations among 15 485 human gene products pertaining to previ-

ously reported protein-protein, transcriptional and metabolic inter-

actions. To focus on driver mutations, we removed all genes that

were neither previously reported as cancer genes (Futreal et al.,

2004; Vogelstein et al., 2013; Iorio et al., 2016) nor were in cancer-

related pathways (Zhang et al., 2013), as well as genes which were

mutated in fewer than four tumors in the training set (we observed

that such filtering led to a �5% improvement in accuracy of predic-

tions and �20-fold improvement in running time). This approach

resulted in a pruned network with 51 nodes (genes) and 296 edges

(gene interactions). We designed 76 edge features based on annota-

tions of interactions and mutation profiles of the training set as

described in Section 2.6 (Supplementary Table S1).

3.2.2 Performance of subtype classification of glioblastoma tumors

We next sought to evaluate the predictive performance of the NBS2

algorithm on the GBM data. We conducted a three-fold cross valid-

ation within the training set to tune hyperparameters, after which

we used the complete training set for building the classifier and the

remaining set of 73 tumors for validation. We noticed a strong anti-

correlation between cost and accuracy, confirming that the cost

function translates well to the goal of accurate classification

(Fig. 3A). The training accuracy started at 34% at iteration 0 and

increased to a plateau of 55–57% in about 60 iterations (Fig. 3A).

Notably, validation accuracy also increased from 47 to 64%, indi-

cating the model generalizes well on new data (Fig. 3B). The preci-

sion and recall were very high for G-CIMP, Classical, Mesenchymal

and Proneural (54–100%), but poor for the Neural subtype

(Table 2). This result is consistent with a previous report that the

Neural subtype has very few, if any, characteristic mutations or

copy number alterations (Verhaak et al., 2010). We also compared

this validation performance to the baselines achieved by our previ-

ous NBS method (Hofree et al., 2013) (based on RWR) and through

direct use of mutation profiles without random walk. In particular,

to achieve two baseline performance scores we calculated the cluster

centroids of the training set to make predictions of the validation

set, just as what we did in Section 2.5. Both baseline methods

achieved 47% in validation accuracy, a performance 17% lower

than that of NBS2 (Fig. 3B).

3.2.3 Characteristic subnetworks for glioblastoma subtypes

At convergence, the weighted network was of particular interest as

it revealed characteristic mutated subnetworks underlying the five

GBM subtypes. For instance, the Classical subtype was known to be

characterized by EGFR mutations and copy number amplifications

Table 1. Edge feature weights learned in simulation

Edge features Feature weights

Subnetwork 1 7.84 6 1.78

Subnetwork 2 7.89 6 1.77

FMG (outgoing) 0.02 6 0.10

FMG (incoming) �0.05 6 0.13

Random 1 �2.28 6 3.18

Random 2 �0.49 6 2.20

Self-loop �0.82 6 2.18

Intercept �8.28 6 2.74
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(Verhaak et al., 2010; Brennan et al., 2013). The characteristic sub-

network revealed by NBS2 recovers these characteristics along with

additional genes, revealing a ‘EGFR-LAMA1-PIK3CA-LRP2’ sub-

network (Fig. 4A). In particular, Integrin-Laminin interaction

(Laminin is partially encoded by LAMA1) is regulated by EGFR

(Rabinovitz et al., 1999) and can activate PI3K (partially encoded

by PIK3CA) during cancer cell migration (Shaw et al., 1997).

Separately, PI3K regulates low density lipoprotein-related protein 2

(encoded by LDL2) in Clathrin-mediated endocytosis (Kirchhausen

et al., 2014). These interactions together identify a pathway related

to motility and invasiveness of cancer cells.

Similarly, the G-CIMP subtype was reported to have characteris-

tic somatic mutations at IDH1 and ATRX (Verhaak et al., 2010;

Brennan et al., 2013). Our analysis recovered these genes within a

larger ‘ABCB1-RB1-ATRX’ subnetwork (Fig. 4A). ABCB1 encodes

a ATP-binding cassette transporter well-known to be involved in

doxorubicin resistance in cancer therapy (Bray et al., 2010). RB,

encoded by RB1, has been recognized to play important roles in

doxorubicin-induced senescence of breast cancer cells (Jackson and

Pereira-Smith, 2006). Thus, mutations on ABCB1 may regulate RB

in tumors treated with doxorubicin. RB is also a known transcrip-

tional repressor of cell cycle, which can control the expression

of ATRX, a chromatin remodeler, through inhibition of E2F1

(Gerstein et al., 2012).

The recovered subnetworks were reasonably stable across five

different splits of the training/validation data: 9/18 signature genes

were selected in most (�3) splits, while 7/18 were selected in all (5)

splits.

Another interesting finding concerns the interactions removed

from the network by the NBS2 algorithm (i.e. heavily down-

weighted), including the three molecular interactions IDH1-EGFR,

TP53-EGFR and MDM2-TP53 (Fig. 4A). The four genes connected

by these interactions are characteristic of different subtypes: IDH1

is almost exclusively mutated in G-CIMP; EGFR alterations are

enriched in the Classical subtype; TP53 is recurrently mutated in G-

CIMP and Proneural subtypes but lacks mutations in the Classical

subtype; and MDM2 mutations are enriched in both Proneural and

Neural subtypes (Fig. 4B). Given these events define different sub-

types during training, the algorithm has learned to prohibit sharing

of mutation information across these interactions. Remarkably, the

mutations of these three gene pairs are all mutually exclusive

(Fig. 4B, Fisher’s exact test P<0.001), a feature that has been used

extensively to prioritize functionally related cancer genes (Ciriello

et al., 2012). Previous studies (Leiserson et al., 2015b) demonstrated

that mutual exclusivity can arise as a consequence of two cancer

subtypes with different characteristic alterations. Our results con-

firm such observation: the mutual exclusivity among these genes

may be driven not by functional similarity of mutations but by the

genomically and functionally distinct nature of different subtypes. In

addition, our method also provides a systematic way to differentiate

whether or not mutual exclusivity of a pair of genes is due to cancer

evolutionary pressure.

When we examined the interaction feature weights, we found

that ‘Epithelial-mesenchymal transition (EMT)’ and ‘Mutual

exclusivity’ were assigned large positive values, suggesting that

propagating mutations through interactions marked by EMT-

pathway and Mutual-Exclusivity features is favorable for stratifica-

tion. ‘Mutation rate of the target gene’ was assigned a large negative

weight, indicating that random walks from a rarely mutated gene to

a recurrently mutated gene was not favorable.

3.3 Classification of breast cancer
As a second case study we examined breast cancer, a heterogeneous

disease that has been previously stratified into four subtypes—Basal,

Her2, Luminal A and Luminal B—based on molecular alterations,

cellular composition and/or clinical outcomes (Prat and Perou,

2011). For instance, the Her2 subtype is characterized by ERBB2

amplification and poor prognosis, whereas the Luminal A subtype is

A

Cost

Accuracy

Training set

Validation set

Cost
NBS
Mutation profiles
Random Walk / NBS

Accuracy{
2

B

30%

35%

40%

45%

50%

55%

60%

65%

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 20 40 60 80 100 120 140

A
cc

ur
ac

y

C
os

t 
pe

r 
pa

tie
nt

Iterations

30%

35%

40%

45%

50%

55%

60%

65%

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 20 40 60 80 100 120 140

A
cc

ur
ac

y

C
os

t 
pe

r 
pa

tie
nt

Iterations

Fig. 3. Performance of glioblastoma subtype classification. Values of cost

function (left y-axis) and classification accuracy (right y-axis) are plotted

against the number of iterations of NBS2 on the (A) training data and (B) valid-

ation data. Dashed line indicates accuracy of tumor stratification based on un-

supervised random walk and non-propagated mutation profiles (equal

values, slight offset in accuracy is for visualization)

Table 2. Glioblastoma validation performance

Predicted

Classical G-CIMP Mesenchymal Neural Proneural

Subtype as defined previously by expression Classical 17 0 3 0 4 24

G-CIMP 0 6 0 0 1 7

Mesenchymal 3 0 16 1 0 20

Neural 3 0 5 1 1 10

Proneural 2 0 2 1 7 12

25 6 26 3 13
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characterized by normal estrogen receptor (ER positive), low tumor

grade, good prognosis and low risk of relapse. These subtypes have

been intensively studied and repeatedly identified by clustering of

mRNA expression data (Perou et al., 2000; Parker et al., 2009).

3.3.1 Breast cancer data processing

We collected somatic mutation and copy number alteration (CNA)

data from 863 breast tumors (Cancer Genome Atlas Network,

2012; Ciriello et al., 2015) which we divided into a training (577

tumors) and a validation set (286 tumors). The data were then pre-

processed as for GBM, resulting in a pruned network with 557

nodes (genes) and 16 590 edges (interactions). For each edge, we

generated the same 76 features as in the GBM network (Sections 2.6

and 3.2.1, Supplementary Table S1).

3.3.2 Performance of breast cancer subtype classification

We evaluated predictive performance on the breast cancer data in a

similar way as we did for GBM. During training, the algorithm con-

verged in about 200 iterations and achieved approximately 70% classi-

fication accuracy (Fig. 5A). The accuracy of the 286-tumor validation

set also increased from 53% to 68% (Fig. 5B). Notably, the prediction

performance of BRCA was better than that of GBM. The main reason

is that 50% of BRCA samples are of type Luminal A, indicating that a

naive classifier could achieve a baseline of 50% accuracy simply by al-

ways predicting this subtype label. The GBM subtypes are more bal-

anced, resulting in a lower baseline prediction accuracy around 32%

(Supplementary Table S2). Importantly, the gain in prediction accuracy

(10–20%) is very significant for both tissues. The precision and recall

were very good for Basal and Luminal A (66–79%, Table 3) and ac-

ceptable for the HER2 subtype (precision¼46%, recall¼60%). The

recall was a bit lower for Luminal B (35%), in which 24 tumors were

mistakenly predicted as Luminal A. This is understandable as the

Luminal cancers are the most heterogeneous in terms of mutation spec-

trum (Cancer Genome Atlas Network, 2012). We next compared this

validation accuracy to the baselines achieved by unsupervised RWR

(53%) or mutation profiles (56%). Overall NBS2 achieved a 12–15%

improvement over baseline methods (Fig. 5B).

3.3.3 Characteristic subnetworks of breast cancer subtypes

At convergence, the weighted interactions revealed subtype-

characteristic subnetworks (Fig. 6A). The resultant subnetworks

were stable across five different splits of the training/validation data:

18/30 genes were selected in most (�3) splits, while 9/30 were

selected in all (5) splits. The Luminal A subtype was characterized

by a 10-gene subnetwork centered on PIK3CA, CDH1, CCND1

and NOTCH1. These genes were highly interconnected, indicating

synergies between their mutations: for example, Cadherin 1
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Fig. 4. Subnetworks for glioblastoma subtypes. (A) (http://www.ndexbio.org/#/net

work/3a5206c2-fd4e-11e7-adc1-0ac135e8bacf) Subnetworks characterizing glio-

blastoma subtypes extracted from Pathway Commons by NBS2. The subnetworks

are defined by the set of genes for which the propagated mutation score is signifi-

cantly different across subtypes (ANOVA False Discovery Rate<0.30) and the set

of interactions for which the activation score is above average (>0.04). The pie

chart represents the relative proportions of the average propagated mutation

score for the five subtypes. For example, the large blue pie slice on IDH1 indicates

that its average propagation score is much higher in G-CIMP tumors than other

subtypes. (B) Mutation profiles and subtype assignments of individual tumors

(columns) associated with genes EGFR, IDH1, MDM2 and TP53 (rows)
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Fig. 5. Performance of breast cancer subtype classification. Values of cost

function (left y-axis) and classification accuracy (right y-axis) are plotted

against the number of iterations of NBS2 on the (A) training data and (B) valid-

ation data. Dashed line indicates the accuracy of tumor stratification based on

unsupervised random walk and non-propagated mutation profiles
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(encoded by CDH1) does not only activate PI3K (partially encoded

by PIK3CA) (Xie and Bikle, 2007), but also interacts with and

degrades cyclin D1 (encoded by CCND1) (Pawar et al., 2010),

which regulates cell cycle. Beyond the interactions with CDH1,

PI3K is required for expression of cyclin D1 (Ye et al., 2000). This

subnetwork also linked to Notch1, which forms a complex with

PI3K (Sade et al., 2004) and, separately, promotes the reduction of

E-cadherin levels (Fujiki et al., 2014).

A second subnetwork of interest, characterizing both Basal and

HER2 subtypes, contained interactions between TP53, EGFR,

NOTCH4 and MET. P53 (encoded by TP53) transcriptionally acti-

vates oncogenes EGFR (Ludes-Meyers et al., 1996) and c-met

(encoded by MET) (Seol et al., 1999). Separately, P53 also sup-

presses Notch4-associated tumorigenesis (Sun et al., 2011). The

mutations on these genes may thus be functionally related in Basal/

HER2 cancers.

Many of the interactions that were removed connect genes char-

acterizing different subtypes, including TP53-PIK3CA, TP53-MYC,

ERBB2-PIK3CA and ERBB2-CDH1. As described above, TP53

mutations characterize Basal and HER2 subtypes; PIK3CA and

CDH1 mutations characterize the Luminal A subtype. In addition,

ERBB2 amplification defines the HER2 subtype; and MYC amplifi-

cation is enriched in Basal and Luminal B subtypes (Fig. 4C). Similar

to the GBM network, traversal through these interactions was

prohibited during supervised learning so as to avoid cross-

contamination between different subtype-characteristic mutation

signals.

In terms of interaction features, we found that ‘CORUM’ (the

protein complex database) and ‘Epithelial-mesenchymal transition

(EMT)’ were assigned the largest positive weights, and ‘Intercept’

was assigned the largest negative weight. These weights indicated

that random walks were generally prohibited for all edges except for

those supported by select edge features such as high-quality protein

complexes or known interactions in the EMT pathway.

4 Discussion

We have presented Network-Based Supervised Stratification (NBS2),

a supervised random walk algorithm for cancer subtype classifica-

tion. Given a reference molecular network and tumor mutation pro-

files, NBS2 learns a strategy to guide the direction of network

propagation for better subtype classification. Case studies on glio-

blastoma and breast tumors demonstrated that NBS2 significantly

outperforms state-of-the-art unsupervised methods. By dissecting

the learned model, NBS2 was able to highlight underlying biological

pathways characteristic of cancer subtypes.

In future, we anticipate that NBS2 can be extended in several

ways. First, from a computational point of view, the linear scoring

function of features could be replaced by a non-linear function (e.g.

neural network) to capture more complicated relationships between

genetic features and clinical measurements. Second, although our

analysis focused on glioblastoma and breast cancer, the method-

ology is general and could be applied to other cancer types or

complex diseases in which information on somatic mutations or

inherited variants is available. Furthermore, the method is extensible

to other types of ‘omics’ data such as gene expression, epigenomics,

proteomic and metabolic profiles and so on.

Table 3. Breast cancer validation performance

Predicted

Basal HER2 Lum A Lum B

Subtype as defined previously by expression Basal 40 1 8 4 53

HER2 3 12 2 3 20

LUM A 10 6 121 16 153

LUM B 8 7 24 21 60

61 26 155 44
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Fig. 6. Subnetworks of breast cancer subtypes. (A) (http://www.ndexbio.org/#/

network/dd268e2f-fd4d-11e7-adc1-0ac135e8bacf) Subnetworks characterizing

breast cancer subtypes extracted from Pathway Commons by NBS2, defined

as for GBM in Figure 4. (B) Mutation profiles and subtype assignments of indi-

vidual tumors (columns) associated with genes TP53, ERBB2, PIK3CA, CDH1

and MYC (rows)
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From a biological perspective, gene expression-based cancer sub-

types have been extensively studied as they are sometimes associated

with distinct molecular, cellular, clinical and therapeutic characteris-

tics (Brennan et al., 2013; Prat and Perou, 2011; Cancer Genome

Atlas Research Network, 2011; Li et al., 2009). However, it has

been a long standing challenge to connect such expression patterns

to their underlying mechanistic basis, that is, the genetic alterations

that drive them. In this study, the networks identified by NBS2 cre-

ate bridges between mutations and gene expression-based subtypes

in GBM and BRCA.

Finally, our results provide an important counterexample of the

notion that mutual exclusivity always indicates co-function within a

pathway (Ciriello et al., 2012). Here, we found that it is sometimes

driven by the genomically and functionally distinct nature of differ-

ent subtypes.
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