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Human cancers are fundamentally heterogeneous, with many 
distinct subtypes associated with differences in molecular, 
cellular and clinical characteristics. To gain insight into this 

complexity, projects such as The Cancer Genome Atlas (TCGA) 
and International Cancer Genome Consortium (ICGC) have used 
massively parallel DNA sequencing to construct large catalogs of 
somatic mutations in many types of tumors1–3. Focusing initially 
on protein-coding regions, several hundred genes were found to be 
recurrently mutated in cancer, a few of which are targetable thera-
peutically4.

As coding regions account for less than 2% of the human 
genome, attention is now shifting to the greater number of somatic 
mutations in noncoding regions5. Thus far, the clearest role for non-
coding mutations in cancer has been in the promoter of the telom-
erase reverse transcriptase gene (TERT)6–8, with such mutations 
leading to increases in TERT expression levels in many types of 
tumors8,9. Although whole-genome sequencing (WGS) of tumor–
normal pairs has found recurrent somatic mutations at several 
other noncoding loci, assessing the function of these mutations, if 
any, has been challenging6–8. In this respect, the task of functional 
interpretation is greatly aided by recent efforts of consortia such  
as ENCODE10,11 and Roadmap12,13, which have published extensive 
reference maps of noncoding regions and their likely transcrip-
tional regulatory connections to genes. Here we show that such 
networks provide critical information for identifying noncoding 
mutations with functional impacts among the many others that 
may be spurious6.

Results
Genome-wide identification of somatic eQTLs in cancer. To 
identify noncoding mutations associated with functional effects, we 
performed a systematic analysis of 930 tumors integrating whole-
genome sequences, matched mRNA expression profiles and refer-
ence transcriptional interaction maps. Using WGS of paired normal 
and tumor tissues in 930 patients across 22 types of cancer from 
TCGA1 (Fig. 1a), we identified 3.5 ×​ 107 sites with somatic single-
nucleotide variations (SNVs). We called these SNVs uniformly 
across all genomes using the MuTect suite14 according to GATK 
best-practice recommendations15, 16 and those of Melton et al.6 
(Fig. 1b). Clusters of noncoding SNVs located within 50 bp of one 
another were grouped, defining recurrently mutated loci (Fig. 1c, 
Methods and Supplementary Fig. 1).

We then tested each locus for its association with changes in 
mRNA expression of target genes (Fig.  1d). This task made use 
of two additional datasets. First, enhancer–gene mappings in 
GeneHancer17 were used along with promoter-proximal regions, 
defined as sequences within 1 kb of each transcription start site (TSS), 
to link recurrently mutated loci to putative target genes considered 
to be under direct transcriptional control (Methods). Second, for 
the vast majority of patients with tumor genome sequences, tumor 
mRNA expression profiles were also available (Fig. 1a). From these 
data, we developed a multivariate linear regression model of the 
expression change of each target gene, as a function of the muta-
tion status of its linked loci and covariates, including the presence 
of copy number alterations (CNAs), DNA methylation status, tissue, 
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ancestry and sex (Fig. 1d and Methods). Conceptually, this proce-
dure is similar to identifying eQTLs, in which inherited nucleotide 
variants are mapped to downstream functional changes18,19. Here, 
however, the variants are somatically acquired rather than inherited. 
Such ‘somatic eQTL analysis’ simplifies the complexity and scope 
of eQTL mapping to a relatively small number of unlinked genetic 
variants: on average, 2.6 loci were tested per gene, with an s.d. of 3.1 
and a maximum number of 53 (Supplementary Fig. 1e).

Altogether, this approach identified a cancer transcriptional net-
work of 206 regulatory interactions between 193 somatic eQTLs 
and 196 gene-expression-level changes, at a false discovery rate 
(FDR) of 20% (Fig. 2a,b and Supplementary Fig. 2; somatic eQTLs 
at different FDR thresholds are provided in Supplementary Table 1 
and the Supplementary Note). At least one locus in this network 
was somatically mutated in 88% of cases studied (820 of 930),  
suggesting that transcriptional dysregulation through noncod-
ing mutations is a general property of most tumors. Somatic 
eQTLs linked noncoding mutations to the expression levels of 13 
known tumor-suppressor genes or oncogenes4, 20, 21 (Supplementary 
Table  1), although, interestingly, known cancer-associated genes 
were not significantly enriched overall (Fisher’s exact test P =​ 0.3). 
We also found that 43% of somatic eQTLs disrupted or created a 
transcription factor binding motif (83 of 193; Supplementary Fig. 3 
and Supplementary Table  2), although this percentage was very 
similar for recurrently mutated loci not detected as somatic eQTLs 
(40%; 2409 of 8607).

Many of the identified somatic eQTLs were frequently mutated in 
specific cancer tissues (Fig. 2c and Supplementary Table 3). Beyond 
the promoter of TERT, which is highly mutated in several tissues as 
previously noted6–8 (Supplementary Fig. 3a,b), we found recurrently 
mutated loci associated with expression of DHX34 (mutated in 43% 
of diffuse large B cell lymphoma), TUBBP5 (29% of lymphomas and 
17% of liver cancers), HYI (21% of melanoma), and PCDH1 (19% of 
acute myeloid leukemia), among others. While most of the somatic 
eQTLs were mutated in multiple tissues, 12 of the somatic eQTLs 
were mutated almost exclusively in melanoma (80% or more of the 
mutations occurred in melanoma). Such enrichment for a single tis-
sue was not seen for any other tissue type.

Somatic eQTLs are recurrently mutated in a second cohort. To 
systematically validate this network, we examined an independent 
pan-cancer cohort from ICGC consisting of genome-wide somatic 
mutation calls for 3,382 patients2. Notably, we found that the major-
ity of the somatic eQTLs identified in the original TCGA discov-
ery set were recurrently mutated in the ICGC validation cohort 
(107 of the 193 at FDR <​ 20%; Fig. 2d). These included 10 of the 12 
melanoma eQTLs, which again were frequently and almost exclu-
sively mutated in the melanoma samples in ICGC (Fisher’s exact 
test P =​ 4.1 ×​ 10−12; Supplementary Table 4). For example, a somatic 
eQTL associated with increased HYI mRNA expression level was 
mutated in 21% of US melanomas (TCGA) and 18% of Australian 
melanomas (ICGC).
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Fig. 1 | Mutation calling and somatic expression quantitative trait locus analysis. a, Types of data and numbers of tumors used in this study. b, Number of 
mutations called per tumor. Box plots show the distribution of this number within tumors of each tissue type (center line, median; upper and lower hinges, 
first and third quartiles; whiskers, highest and lowest values within 1.5 times the interquartile range outside hinges; dots, outliers beyond 1.5 times the 
interquartile range). The number of tumors of each type (sample size) is shown in the right panel. c, Clustering of somatic noncoding mutations resulting 
in identification of recurrently mutated loci. d, Workflow of somatic eQTL analysis. WGS, whole-genome sequencing; WES, whole-exome sequencing; 
SNV, single-nucleotide variation.
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Increasing DAAM1 expression leads to cell invasion. We next 
sought to examine in more detail the somatic eQTL located 191 bp 
upstream of DAAM1 (Fig. 2a and Methods), which is recurrently 
mutated in patients with melanoma who have metastatic disease 
in both cohorts (Fig. 2c,d). The DAAM1 protein forms a complex 
with Dishevelled and RhoA to recruit the actin cytoskeleton, which 
is thought to increase the motility and invasiveness of cancer cells 
in response to Wnt signaling22–24. Mutations at this somatic eQTL 
are associated with increased DAAM1 mRNA expression levels 
potentially owing to the loss of an E2F motif and the gain of an 
Ets motif (Fig.  3a; NC_000014.8:g.59655190 G >​ A). To confirm a 
causal relationship between the somatic eQTL and gene expression 
level changes, wild-type and mutant DAAM1 regulatory elements 
were inserted upstream of the GFP gene (Fig. 3b). Analysis by flow 
cytometry showed that the mutated regulatory element led to a sig-
nificantly higher percentage of cells expressing GFP in melanoma, 
sarcoma and breast cancer cell lines (Fig. 3c,d and Supplementary 
Fig.  4). Furthermore, the GFP-expressing cells had significantly 
higher levels of GFP expression with the mutant rather than the 

wild-type DAAM1 element in all four cell lines tested (Fig. 3d and 
Supplementary Fig. 4c,e,g).

We also explored the functional relationship between increased 
DAAM1 expression and cell motility, using an established 3D col-
lagen hydrogel matrix model25. Genome-wide mRNA sequencing 
was performed on cells grown within low- or high-density collagen, 
mimicking the stiffness of normal or tumor tissues and eliciting less 
and more invasive phenotypes, respectively26, 27 (Methods). In these 
experiments, DAAM1 was one of the most upregulated transcripts 
under invasive conditions28 (Supplementary Fig. 5). To test whether 
invasion was functionally dependent on DAAM1, we quantified cell 
migration behavior after DAAM1 expression was increased artificially 
by exogenous overexpression (Fig. 3e, Methods and Supplementary 
Fig. 6e). When cells overexpressing DAAM1 were embedded in the 
3D collagen hydrogel, they migrated with significantly greater persis-
tence than did wild-type cells (P =​ 0.008, two-sided Mann–Whitney 
U test; Supplementary Fig.  6a). Cells overexpressing DAAM1 also 
invaded for longer distances than wild-type cells (P =​ 0.01, two-sided 
Mann–Whitney U test; Fig. 3f–h), while retaining the same velocities 
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Fig. 2 | Effect size and recurrence of somatic eQTLs. a, Volcano plot of associations between somatic eQTLs and the expression level changes of their 
target genes, evaluated by significance (y axis; F-test P value, n =​ 783 tumors) versus effect size (x axis). One unit on the x axis represents 1 s.d. of change 
in gene expression. FDR was calculated using the Storey approach50. Selected somatic eQTLs are labeled by coordinates in base pairs relative to the TSS 
of the target gene. b, Ideogram of the 193 significant somaitc eQTLs at FDR <​ 20%. c, Heat map showing the percentage of patients in various cancer 
tissues with alterations in each somatic eQTL. Somatic eQTLs and cancer tissues with mutation rates of ≥​15% are shown. d, Validation of somatic eQTL 
recurrence in a pan-cancer cohort from ICGC. The quantile–quantile plot shows the observed empirical P values of mutation recurrence (n =​ 3,382 tumors) 
compared to the random expectation for the 193 somatic eQTLs. FDR was calculated using the Benjamini–Hochberg approach.
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as wild-type cells (Supplementary Fig. 6b,c). This invasive phenotype 
was observed in the absence or presence of additional Wnt5a sig-
naling (Supplementary Fig. 6d). These results suggest that increased 
DAAM1 expression levels allow cells to more efficiently invade the 
local microenvironment, thereby linking this noncoding mutation to 
DAAM1 overexpression and cell invasion.

Noncoding mutations dysregulating MTG2 and HYI. Beyond 
DAAM1, we examined two additional somatic eQTLs, one in the 
promoter of MTG2 ( +​ 19 to +​ 33) and another in the enhancer of 
HYI ( +​ 95,097 to +​ 95,132) (Methods). The first eQTL was associated 
with decreased MTG2 mRNA expression levels, likely owing to the 
disruption of a HIF-1β​ binding motif by the G-to-A mutation 19 bp 
downstream of the TSS (Fig.  4a; NC_000020.10:g.60758100 G >​ A).  
This somatic eQTL was present in several types of cancer, including 

lung adenocarcinoma and sarcoma. Using another GFP-based reporter 
assay of promoter activity, we found that this G-to-A mutation greatly 
decreased reporter gene expression in both A549 lung epithelial carci-
noma cells and U2OS bone osteosarcoma cells (Fig. 4b). The second 
eQTL was present in 21% of melanomas (Fig. 2c) and was associated 
with increased HYI mRNA expression levels, likely owing to G-to-A or 
GG-to-AA substitutions altering an Ets family binding motif (Fig. 4c; 
NC_000001.10:g.43824528 G >​ A, NC_000001.10:g.43824529 G >​ A, or 
NC_000001.10:g.43824528_43824529GG >​ AA). As this somatic eQTL 
was present in an enhancer region, we used a luciferase-based reporter 
assay where regulatory elements were cloned upstream of a mini-pro-
moter and luciferase. We found that two of the three HYI enhancer vari-
ants led to increased expression levels relative to the wild-type sequence 
in both A375 melanoma cells and MDA-MB-231 breast cancer  
cells (Fig. 4d).
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Noncoding and coding mutations converge on pathways. Next, 
we investigated the relationship between the 196 genes transcrip-
tionally regulated by somatic eQTLs and the 138 genes previ-
ously documented to have recurrent coding mutations in cancer21. 
This combined set of genes was analyzed by Network-Based 
Stratification (NBS)29,30 (Fig.  5a), which uses a reference molec-
ular network to implicate network regions associated with the 
genetic alterations in a tumor and groups tumors into subtypes on 
the basis of similarity of these implicated regions. As a reference 
molecular network, we used ReactomeFI31, documenting 229,300 
interactions among 12,177 human gene products pertaining to 
previously reported protein–protein, transcriptional and meta-
bolic interactions.

This approach identified a collection of network regions (hence-
forth called ‘pathways’ for simplicity) that stratified tumors into a 
hierarchy of increasingly specific subtypes (Fig. 5b). At a resolution 
of ten subtypes, each subtype was enriched in 2–5 tumor tissues 
and tumors of each tissue could be subdivided into 1–3 subtypes 
(Supplementary Fig.  7). Nonetheless, these subtypes differed sig-
nificantly in their implications for disease-free survival, beyond 
the baseline survival for each tissue (P =​ 3.3 ×​ 10−6, log likelihood 
ratio test controlling for the tissue types as covariates; Fig. 5c and 
Supplementary Fig. 8).

Subtypes aggregating noncoding and coding mutations. Among 
the ten subtypes, four were of particular interest as they con-
tained a large proportion of patients with noncoding mutations 
(Fig.  5d). The ‘CDKN2A–EGFR–TERT subtype’ (Fig.  5e,f) was 
defined by disruption of the CDKN2A coding sequence, some-
times in combination with noncoding mutations to the TERT pro-
moter, EGFR activation, or BRAF activation. CDKN2A encodes 
p14ARF, which can form a complex with HIF-1α​ and inhibit HIF-
1-mediated transcription of TERT32, 33. These loss-of-function 
mutations in CDKN2A may release a key brake on the activity of 
hTERT. Separately, gain-of-function mutations in EGFR may lead 

to increased levels of mTOR phosphorylation and activation34, 
which can upregulate telomerase activity by forming a complex 
with hTERT35. The synergy between BRAF and TERT mutations 
has been previously noted and attributed to modulation of TERT 
transcription through BRAF–RAS–ERK signaling36. This pathway 
was also linked to DAAM1 promoter mutations (Fig.  5d), vali-
dated previously, as DAAM1 forms a complex with Dishevelled 
(DVL3)22, 23, which indirectly regulates transcription of CDKN2A 
and EGFR through inhibition of Notch137. This subtype was the 
most aggressive, with median disease-free survival time at 13 
months (Fig. 5c).

A second subtype of interest, the ‘TERT–BRAF–IDH1 subtype’ 
(Supplementary Fig.  9) was characterized by tumors with TERT 
noncoding mutations or amplifications, combined in some patients 
with coding alterations to functionally related genes such as BRAF 
and SKP2. Beyond the synergy between BRAF and TERT muta-
tions as described above, SKP2 is essential for ubiquitination and 
degradation of p27KIP1 (encoded by CDKN1B)38, which inhibits the 
activity of hTERT39. Amplification of SKP2 in this pathway may thus 
increase the activity of hTERT.

A third subtype, ‘PIK3CA–PEX26–GATA3’ (Fig.  5g,h), inte-
grated coding alterations activating PIK3CA and inactivating 
GATA3 with noncoding alterations downregulating PEX26. In this 
pathway, members of the peroxisomal biogenesis factor family 
(PEX26 and PEX6) appear to indirectly interact with PIK3CA and 
GATA3 through the binding of SMAD family members (SMAD3 
and SMAD7)40.

Finally, the fourth subtype, ‘APOBEC2–ARID1A–CTNNB1’, 
was characterized by the co-occurrence of noncoding mutations 
within an enhancer of APOBEC2 and coding alterations in ARID1A 
and CTNNB1. APOBEC2 encodes a nucleic-acid-editing enzyme 
with well-known mutagenic effects in cancer41. Although ARID1A 
and CTNNB1 are also known cancer drivers, the connections to 
APOBEC are unanticipated and create a compelling opportunity for 
further study.
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Discussion
Relative to coding changes, interpretation of noncoding mutations 
poses particular challenges owing to the very large number of events 

and a limited understanding of their functional consequences. 
Dealing with these challenges requires strategies to boost signal to 
noise, which we have pursued here by integrating mutations with 
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key structural and functional data on transcriptional networks. 
Structurally, maps of enhancer– and promoter–gene interactions 
amplify signal by selecting noncoding mutations within defined 
regulatory regions of specific target genes. These mutations are 
then characterized functionally as somatic eQTLs by requiring their 
presence to be significantly associated with expression changes in 
tumors. The result is a global network of transcriptional regula-
tory interactions in cancer supported by multiple lines of evidence. 
Given that most tumors we analyzed had noncoding mutations 
affecting some part of this network, such mutations appear to repre-
sent a widespread feature of cancer biology.

Of the approximately 200 noncoding mutations that have previ-
ously been identified as recurrent in cancer6–8, one-third were also 
identified here as recurrently mutated loci (Fig. 1c), including well-
known mutations in the promoters of PLEKHS1 and DPH3. Notably, 
though, with the exception of TERT, these mutations did not associ-
ate significantly with mRNA expression level changes. This suggests 
that the effects of these mutations are through mechanisms outside 
of transcriptional regulation or that the effects on mRNA expres-
sion are weaker than could be detected given our statistical power 
(Supplementary Fig. 2c). On the other hand, hundreds of somatic 
eQTLs were identified, all of which were unanticipated other than 
those in the promoter of TERT. Many of the affected genes are not 
yet widely appreciated as cancer drivers, motivating further studies 
on the mechanistic basis of noncoding mutations in cancer.

Given an association between gene expression changes and a 
somatic mutation, it is important to consider whether this associa-
tion reflects a causal relationship. Although it is tempting to assume 
that the occurrence of a mutation drives gene expression changes, 
the opposite could be true, where the change in gene expres-
sion levels drives the appearance of the mutation (for example, by 
increased opening and exposure of chromatin). It is also possible 
that both effects could be due to a third causal factor. However, the 
three examples we tested experimentally do support a causal link 
from mutation to expression changes. These results include tran-
scriptional alterations of DAAM1, impacting cell migration (Fig. 3 
and Supplementary Fig. 4); MTG2, which encodes a GTPase that 
regulates mitochondrial ribosomes42 (Fig.  4a,b); and HYI, which 
encodes a putative hydroxypyruvate isomerase and may be involved 
in carbohydrate transport and metabolism43 (Fig. 4c,d).

Finally, the somatic eQTL analysis introduced here contrasts with 
germline eQTL studies in several key aspects. First, in GWAS and 
germline eQTL studies, testing of multiple SNPs is complicated by 
the strong codependencies among neighboring SNPs at a genomic 
locus—so-called linkage disequilibrium44, 45. In contrast, somatic 
mutations near to one another in the genome are not in linkage dis-
equilibrium as these alterations, by definition, arise independently 
in each tumor. Second, population stratification caused by ancestry 
diversity has been a major confounder in the analysis of germline 
variants44, 45. It is less of a concern for somatic variants, as these are 
derived from comparisons between tumor and normal genomes 
from the same individual, eliminating many, if not all, effects due 
to ancestry. Nonetheless, we controlled for ancestry diversity and 
found that the impact on somatic eQTL discovery was minimal. 
Given these aspects, somatic eQTL analysis may have future interest 
alongside classical eQTLs as a general mode of mapping transcrip-
tional regulatory architecture.

URLs. TCGA Research Network, http://cancergenome.nih.gov/; 
Firehose, https://confluence.broadinstitute.org/display/GDAC/
Home; TCGA RNA-seq data description, https://wiki.nci.nih.gov/
display/TCGA/RNASeq +​ Version +​ 2; poibin Python package, 
https://github.com/tsakim/poibin; HOMER, http://homer.ucsd.edu/
homer/index.html; somatic mutations of the 930 tumors, http://
ideker.ucsd.edu/papers/wzhang2017/; GitHub site for custom code, 
https://github.com/wzhang1984/Noncoding-tumor-mutation-paper.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0091-2.

Received: 28 June 2017; Accepted: 16 February 2018;  
Published: xx xx xxxx

References
	1.	 Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas 

Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
	2.	 International Cancer Genome Consortium. International network of cancer 

genome projects. Nature 464, 993–998 (2010).
	3.	 Hofree, M. et al. Challenges in identifying cancer genes by analysis of exome 

sequencing data. Nat. Commun. 7, 12096 (2016).
	4.	 Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 

166, 740–754 (2016).
	5.	 Khurana, E. et al. Role of non-coding sequence variants in cancer. Nat. Rev. 

Genet. 17, 93–108 (2016).
	6.	 Melton, C., Reuter, J. A., Spacek, D. V. & Snyder, M. Recurrent somatic 

mutations in regulatory regions of human cancer genomes. Nat. Genet. 47, 
710–716 (2015).

	7.	 Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide 
analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 
1160–1165 (2014).

	8.	 Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of 
noncoding somatic mutations and gene expression alterations across 14 
tumor types. Nat. Genet. 46, 1258–1263 (2014).

	9.	 Huang, F. W. et al. Highly recurrent TERT promoter mutations in human 
melanoma. Science 339, 957–959 (2013).

	10.	Hoffman, M. M. et al. Integrative annotation of chromatin elements from 
ENCODE data. Nucleic Acids Res. 41, 827–841 (2013).

	11.	ENCODE Project Consortium. An integrated encyclopedia of DNA elements 
in the human genome. Nature 489, 57–74 (2012).

	12.	Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference 
human epigenomes. Nature 518, 317–330 (2015).

	13.	Ernst, J. & Kellis, M. Large-scale imputation of epigenomic datasets for 
systematic annotation of diverse human tissues. Nat. Biotechnol. 33,  
364–376 (2015).

	14.	Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure 
and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

	15.	DePristo, M. A. et al. A framework for variation discovery and genotyping 
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

	16.	Van der Auwera, G. A. et al. From FastQ data to high-confidence variant 
calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. 
Bioinformatics 43, 11.10.1–11.10.33 (2013).

	17.	Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and 
target genes in GeneCards. Database 2017, https://doi.org/10.1093/database/
bax028 (2017).

	18.	GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science 348, 648–660 (2015).

	19.	Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast 
cancer risk loci. Cell 152, 633–641 (2013).

	20.	Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 
177–183 (2004).

	21.	Vogelstein, B. et al. Cancer genome landscapes. Science 339,  
1546–1558 (2013).

	22.	Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates 
vertebrate gastrulation and requires a novel Formin homology protein 
Daam1. Cell 107, 843–854 (2001).

	23.	Liu, W. et al. Mechanism of activation of the Formin protein Daam1.  
Proc. Natl Acad. Sci. USA 105, 210–215 (2008).

	24.	Zhu, Y. et al. Dvl2-dependent activation of Daam1 and RhoA regulates 
Wnt5a-induced breast cancer cell migration. PLoS One 7, e37823 (2012).

	25.	Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-
dimensional cell motility. Nat. Cell Biol. 12, 598–604 (2010).

	26.	Fraley, S. I. et al. Three-dimensional matrix fiber alignment modulates cell 
migration and MT1-MMP utility by spatially and temporally directing 
protrusions. Sci. Rep. 5, 14580 (2015).

	27.	Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force 
journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

	28.	Velez, D. O. et al. 3D collagen architecture induces a conserved migratory 
and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 
8, 1651 (2017).

	29.	Hofree, M., Shen, J. P., Carter, H., Gross, A. & Ideker, T. Network-based 
stratification of tumor mutations. Nat. Methods 10, 1108–1115 (2013).

	30.	Cancer Genome Atlas Research Network. Integrated genomic characterization 
of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

Nature Genetics | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://cancergenome.nih.gov/
https://confluence.broadinstitute.org/display/GDAC/Home
https://confluence.broadinstitute.org/display/GDAC/Home
https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2
https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2
https://github.com/tsakim/poibin
http://homer.ucsd.edu/homer/index.html
http://homer.ucsd.edu/homer/index.html
http://ideker.ucsd.edu/papers/wzhang2017/
http://ideker.ucsd.edu/papers/wzhang2017/
https://github.com/wzhang1984/Noncoding-tumor-mutation-paper
https://doi.org/10.1038/s41588-018-0091-2
https://doi.org/10.1038/s41588-018-0091-2
https://doi.org/10.1093/database/bax028
https://doi.org/10.1093/database/bax028
http://www.nature.com/naturegenetics


Articles NATure GeneTiCs

	31.	Wu, G., Feng, X. & Stein, L. A human functional protein interaction  
network and its application to cancer data analysis. Genome Biol. 11,  
R53 (2010).

	32.	Fatyol, K. & Szalay, A. A. The p14ARF tumor suppressor protein facilitates 
nucleolar sequestration of hypoxia-inducible factor-1α​ (HIF-1α​) and inhibits 
HIF-1-mediated transcription. J. Biol. Chem. 276, 28421–28429 (2001).

	33.	Nishi, H. et al. Hypoxia-inducible factor 1 mediates upregulation of 
telomerase (hTERT). Mol. Cell. Biol. 24, 6076–6083 (2004).

	34.	Fan, Q.-W. et al. EGFR signals to mTOR through PKC and independently of 
Akt in glioma. Sci. Signal. 2, ra4 (2009).

	35.	Kawauchi, K., Ihjima, K. & Yamada, O. IL-2 increases human telomerase 
reverse transcriptase activity transcriptionally and posttranslationally through 
phosphatidylinositol 3′​-kinase/Akt, heat shock protein 90, and mammalian 
target of rapamycin in transformed NK cells. J. Immunol. 174,  
5261–5269 (2005).

	36.	Li, Y., Cheng, H. S., Chng, W. J. & Tergaonkar, V. Activation of mutant  
TERT promoter by RAS–ERK signaling is a key step in malignant 
progression of BRAF-mutant human melanomas. Proc. Natl Acad. Sci. USA 
113, 14402–14407 (2016).

	37.	Cooper, M. T. & Bray, S. J. Frizzled regulation of Notch signalling polarizes 
cell fate in the Drosophila eye. Nature 397, 526–530 (1999).

	38.	Spruck, C. et al. A CDK-independent function of mammalian Cks1: targeting 
of SCFSkp2 to the CDK inhibitor p27Kip1. Mol. Cell 7, 639–650 (2001).

	39.	Lee, S.-H. et al. IFN-γ​/IRF-1-induced p27kip1 down-regulates telomerase 
activity and human telomerase reverse transcriptase expression in human 
cervical cancer. FEBS Lett. 579, 1027–1033 (2005).

	40.	Warner, D. R., Roberts, E. A., Greene, R. M. & Pisano, M. M. Identification of 
novel Smad binding proteins. Biochem. Biophys. Res. Commun. 312, 
1185–1190 (2003).

	41.	Okuyama, S. et al. Excessive activity of apolipoprotein B mRNA editing 
enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung 
tumorigenesis. Int. J. Cancer 130, 1294–1301 (2012).

	42.	Hirano, Y., Ohniwa, R. L., Wada, C., Yoshimura, S. H. & Takeyasu, K. Human 
small G proteins, ObgH1, and ObgH2, participate in the maintenance of 
mitochondria and nucleolar architectures. Genes Cells 11, 1295–1304 (2006).

	43.	Ashiuchi, M. & Misono, H. Biochemical evidence that Escherichia coli hyi 
(orfb0508, gip) gene encodes hydroxypyruvate isomerase. Biochim. Biophys. 
Acta 1435, 153–159 (1999).

	44.	Bush, W. S. & Moore, J. H. Chapter 11: genome-wide association studies. 
PLoS Comput. Biol. 8, e1002822 (2012).

	45.	Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to 
population stratification in genome-wide association studies. Nat. Rev. Genet. 
11, 459–463 (2010).

	50.	Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. 
Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

Acknowledgements
The results published here are in whole or part based upon data generated by the 
TCGA Research Network (see URLs). We would also like to acknowledge the clinical 
contributors and the data producers from the ICGC who have generated the particular 
datasets and made them available for public analysis. This work was supported by 
NIH grants to T.I. (U24CA184427, U54CA209891, P50GM085764, P41GM103504 
and R01HG009979) and H.C. (DP5OD017937). G.X. is supported by a UCSD CTRI 
grant (UL1TR001442). S.I.F. and D.O.V. are supported by a Burroughs Wellcome Fund 
Career Award at the Scientific Interface (1012027), an NSF CAREER Award (1651855), 
and UCSD CTRI and FISP pilot grants. We would like to thank members of the Ideker 
laboratory for valuable comments and critical reading of the manuscript. Finally, we wish 
to thank the patients and their families for their contributions of valuable data without 
which this project would not have been possible.

Author contributions
W.Z. and T.I. conceived the study. W.Z. designed and performed most of the analyses. 
G.X. performed mutation calling of 358 tumors. C.M. and M.S. provided mutation 
calling of 572 tumors. A.B.-G., K.S.S., J.P.S., K.M.O. and E.K.F. performed the somatic 
eQTL reporter assays. A.B.-G. and J.F.K. analyzed the flow cytometry and luciferase assay 
data. A.B.-G., J.P.S. and K.L. performed protein electropherogram analysis. D.O.V., K.C. 
and S.I.F. performed 3D cell culture assays. M.K.Y. and H.C. helped W.Z. in designing the 
somatic eQTL analysis. J.K.H. helped W.Z. in network analysis. T.I., J.F.K. and W.Z. wrote 
the manuscript and formulated all figures.

Competing interests
T.I. is cofounder of Data4Cure, Inc., and has an equity interest. T.I. has an equity interest 
in Ideaya BioSciences, Inc. The terms of this arrangement have been reviewed and 
approved by the University of California, San Diego, in accordance with its conflict-of-
interest policies. No potential conflicts of interest were disclosed by the other authors.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-018-0091-2.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to W.Z. or J.F.K. or T.I.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Nature Genetics | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

https://doi.org/10.1038/s41588-018-0091-2
https://doi.org/10.1038/s41588-018-0091-2
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


ArticlesNATure GeneTiCs

Methods
Calling and clustering of somatic noncoding mutations. Somatic noncoding 
mutations from 930 tumors were called as described in the main text. Clusters of 
noncoding mutations within d =​ 50 bp of each other were merged using BEDTools46 
until no such locus was located within d bp from any other. Loci with mutations  
in k <​ 5 tumors were removed from further analyses. The above parameters  
d and k were chosen to aggregate mutations within a short distance with a modest 
requirement of recurrence. We achieved very similar results when d was within 
the range of 20 to 60 bp (inclusive). Whenever a subset of 930 tumors was used in 
subsequent analyses (Fig. 1a), this set was again filtered to remove those altered 
in fewer than k tumors within the subset. We also calculated a ‘concentration 
score’ to penalize loci where mutations were spread over a large region rather than 
concentrated at a single base pair, as might be expected for sites affecting gene 
transcription. Within each locus, we selected the mutated position present in the 
largest number of patients. The proportion of patients affected at that position  
(out of all patients affected by mutations at that locus) was defined as the 
concentration score. Loci scoring <​ 35% were removed from further study. It is worth 
noting that the threshold for the concentration score is somewhat arbitrary and could 
lead to certain loci with multiple closely located somatic mutations being missed. It 
should also be noted that, by clustering noncoding mutations into loci, we assume 
that all SNVs in a locus act in a similar way. This assumption is consistent with the 
previously identified SNVs in the TERT promoter. Our analysis does not attempt to 
detect loci in which different SNVs alter gene expression in opposite directions.

RNA-seq, CNA and DNA methylation data processing. RNA-seq, CNA (SNP 6.0) 
and DNA methylation (Illumina HM450) data for TCGA tumors were downloaded 
from Firehose (see URLs). The data were processed as follows. First, for RNA-seq,  
the RSEM count for a gene (RNA-seq by expectation maximization)47 was 
normalized by dividing by the 75th percentile of RSEM values within the tumor 
sample and multiplying by 1000, according to TCGA practice (see URLs). Genes 
were retained if the normalized RSEM was >​ 1 in >​ 50% of tumors, resulting in 
16,413 expressed genes. Normalized RSEM values were log2 transformed and  
z score standardized for subsequent analyses. Second, for CNAs, we used the output 
of GISTIC2, which indicates gene-level CNAs for all samples. The CNAs are in units 
of (copy number – 2), so that normal copy number (no amplification or deletion) 
has a value of 0, whereas genes with amplifications have positive values and genes 
with deletions have negative values. A gene is assigned the highest amplification or 
the lowest deletion value among the markers it covers. Among the 783 patients with 
both mRNA expression and genome sequence data, 761 also had copy number data 
available. The remaining patients were assigned 0 for all CNAs. Third, methylation 
probes were mapped to the promoter regions of genes ( ±​ 1 kb from the TSS), and 
each gene was assigned the mean methylation (beta) values of these probes. Among 
the 783 TCGA patients with both mRNA expression and genome sequences data, 
605 had methylation data available. Methylation data for the remaining patients 
were imputed using mean values for the DNA methylation of each gene.

Linking recurrently mutated loci to transcriptional target genes. Our 
recurrently mutated loci were extended by 100 bp on each side when mapping to 
promoters or enhancers. Transcriptional regulatory interactions from recurrently 
mutated loci to target genes were defined whenever a locus had 50% of its sequence 
overlap with either the promoter region of a gene ( ±​ 1 kb from its TSS) or a gene 
enhancer region defined by GeneHancer17. In the case where an enhancer was 
shorter than a locus, the mapping was performed when 50% of the enhancer 
sequence overlapped with the locus.

Somatic eQTL analysis using multivariate linear regression. For each gene target 
linked to recurrently mutated loci, we fit a regression model of the normalized gene 
expression level e as a function of l, the alteration status of its recurrently mutated 
loci (1, mutated; 0, wild type), controlling for the impact of CNA status c (0, wild 
type; positive value, amplification; negative value, deletion), DNA methylation 
m (mean beta value), 21 tumor tissues t (binary variables), 3 ancestries r (binary 
variables: Asian; black or African American; white), gender g (1, female; 0, male) 
and 20 hidden factors h (real values) as covariates

β β β β β β β β= + + + + + + +e l c m t r g h (1)0 1 2 3 4 5 6 7

The hidden factors h were identified using probabilistic estimation of 
expression residuals (PEER)48, 49, while accounting for the effect of known 
covariates t, r and g. The number of hidden factors was determined by the posterior 
variance of the factor weights, as previously recommended49. The parameters β 
were estimated from data from 783 tumors with matched RNA-seq and WGS data. 
Somatic eQTLs were identified as follows. First, for each gene, we selected features 
by adding an L1-norm to the objective function based on the least-squared error 
between the true and predicted gene expression levels.

λ β− ^ + ∥ ∥e e( ) (2)2
1

The sparsity parameter λ was optimized by cross-validation. For genes in 
which the L1-norm resulted in β1 =​ 0 for all loci, we decreased λ to include at least 

one locus. Second, to assess whether the mutation status of any locus contributed 
significantly to gene expression, the accuracy of the complete model was compared 
to that of a simple model under the null hypothesis of no genetic associations  
(i.e., β1 =​ 0 for all loci). The F-test P value between the two nested models was used 
as the test statistic. Third, having derived an F-test P value for each gene, q values 
were calculated using the Storey approach50 with a threshold of FDR ≤​ 20%. And 
finally, for each gene that passed the selection, this threshold was mapped back to 
the equivalent F-test P value of each locus. Loci with F-test P values below or equal 
to this threshold were included in the final list and defined as somatic eQTLs.

We elected to perform one test per gene for three reasons. First, in GWAS 
and typical (germline) eQTL studies, linkage disequilibrium complicates the 
simultaneous testing of multiple SNPs in a single model because these SNPs are 
usually codependent. Unlike inherited SNPs, somatic mutations observed in a 
tumor population are not in linkage disequilibrium no matter how closely they 
are located. Therefore, a simple F test, which assumes independent influences 
of multiple factors, is sufficient to simultaneously test whether any loci are 
associated with gene expression. Second, for each gene, all eQTLs share the 
same set of covariates along with the associated phenotype of mRNA expression 
level. If multiple eQTLs are associated with gene expression levels, they can be 
covariates of one another. It is then convenient to fit them all in a single model 
and enjoy the benefit of gene-based approaches such as feature selection by L1 
regularization. Third, there is precedent in the literature to fit gene-level models 
in eQTL studies51, 52.

Power analysis. Statistical power depends on various parameters, including the 
number of samples, the eQTL effect size, the noise, and the significance threshold. 
Instead of a simulation based on a model of noise, we evaluated statistical power 
using the actual data. All locus–gene pairs were plotted in Supplementary Fig. 2c, 
evaluated by the number of patients with mutations (x axis) versus the change in 
gene expression given the mutation (y axis; defined by =

. .
W Coefficient

Residual s d ; one unit 
of W represents 1 s.d. of change in residual gene expression). Power was defined 
as 1 – P(type II error) at a significance level of P(type I error) =​ 0.0085, which is 
approximately at 20% FDR. We calculated power using the pwr.f2.test function in 
R, where the f 2 effect size was calculated on the basis of the proportion of variance 
explained by two nested models ( = −

−
f R R

R
2

1
alternative
2

null
2

alternative
2 ). Our somatic eQTL analysis 

has 50% power to detect a somatic eQTL with five mutations if W >​ 1.2 or with ten 
mutations if W >​ 0.9.

Independent validation of recurrence. To validate the recurrence of mutations 
in the identified somatic eQTLs, we downloaded simple somatic mutations 
(substitutions) called from the WGS of n =​ 3382 publicly available non-US donors 
from the ICGC2. For each eQTL, the number of mutated patients k was used as 
the test statistic. To determine whether k was greater than expected owing to the 
background mutation rate (BMR), we developed an approach for estimating BMR 
that was conceptually similar to MutSigCV53. First, a large pool of 20,000 candidate 
background sequences was created by randomly reassigning (without replacement) 
the location of the eQTL to the same type of noncoding genomic regions 
(promoters or putative enhancers17) while retaining the eQTL’s length.  
Each of these 20,000 sequences was placed in a 3D feature space taking into 
account nucleotide content, DNA replication timing and gene expression. 
Nucleotide content was represented as the percentages of all possible 
mononucleotides (A/T versus C/G), dinucleotides (e.g., AA, AC and AG) and 
trinucleotides (for example, AAA, AAC and AAG), encoded as a 44-dimensional 
vector. This information was then compressed into a single feature representing 
nucleotide content, using the Pearson’s correlation between the vector of the 
candidate sequence and the vector of the original eQTL. DNA replication timing 
was obtained from ENCODE via the UCSC Genome Browser54. To create a 
single replication timing feature, we used the average wavelet-smoothed signal 
from the following 14 cell lines: BJ, GM06990, GM12801, GM12812, GM12813, 
GM12878, HeLa-S3, HepG2, HUVEC, IMR-90, K562, MCF-7, NHEK and SK-
N-SH, according to the method of Melton and colleagues6. For gene expression, 
the median expression value of the nearest gene (log2-transformed RNA-seq data, 
783 TCGA patients) was used as a feature. The above three features were z score 
standardized. Within this feature space, the top 5% (1,000 of 20,000) background 
sequences with the smallest Euclidean distance to the eQTL of interest were 
selected. For each patient, a patient-specific BMR was estimated as the number 
of sequences with at least one mutation in that patient out of the 1,000 selected 
sequences. Finally, we estimated the probability of having observed k or more 
mutations in n patients in the eQTL of interest using a Poisson binomial model

∑ ∑ ∏ ∏≥ = −
= ∈ ∈ ∈

P K k p p( ) (1 ) (3)
l k

n

A F i A
i

j A
j

l
c

where Fl is the set of all subsets of k integers that can be selected from {1, 2, …​, n}, 
pi or pj is the probability that patient i or patient j is mutated, A is a set of k integers 
that can be selected from {1, 2,…​, n} and Ac is the complement of A. In practice, 
we used an approximation for the Poisson binomial in the poibin Python package 
(see URLs).
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Transcription factor binding motif analysis. Each reference and somatically 
altered nucleotide site, along with ±​ 7 bp of flanking sequence, was analyzed using 
HOMER55 (see URLs). HOMER searches for matches within a library of 319 
vertebrate motifs (position weight matrices). Specifically, we ran the findMotifs.pl 
program with default parameters to find motifs from FASTA files. The reference 
and altered sequences were used as the background for each other to control the 
nucleotide context. The command line is

findMotifs.pl seqList_mappable_alt.fa fasta log/ -fastaBg seqList_mappable_ref.
fa -p 16 -find ~/soft/homer/data/knownTFs/vertebrates/known.motifs

The list of somatic eQTLs that disrupt or create transcription factor binding 
motifs in four or more patients is reported in Supplementary Table 2.

Prioritizing somatic eQTLs for subsequent functional validation. The three 
somatic eQTLs selected for functional studies (DAAM1, HYI1 and MTG2) were 
chosen based on the specific biological interest of the authors and several rules of 
thumb:

1.	 The somatic eQTL alters a known transcription factor binding motif in 
many patients;

2.	 The somatic eQTL falls in open chromatin in previously mapped cell lines 
and conditions (for example, in regions with markers such as H3K27ac 
and H3K4me1)11;

3.	 The affected target gene has high endogenous mRNA expression levels in 
cell lines56 that match where the somatic eQTL was detected;

4.	 The somatic eQTL is not present in a region with repetitive DNA.

Note that none of this information was used to filter loci before somatic eQTL 
analysis, as it is not complete, conclusive or cancer specific.

Generation of reporter plasmids. To examine the effect of the DAAM1 somatic 
eQTL on gene expression levels, the wild-type and mutant regulatory regions, 
from −​233 bp to +​ 148 bp relative to the TSS, including the somatic eQTL at −​202 
to −​191 bp, were synthesized and cloned upstream of GFP (Fig. 3b). For MTG2, 
the cloned region spanned −​200 bp to +​ 200 bp relative to the TSS, including the 
somatic eQTL at +​ 19 to +​ 33 bp.

For the somatic eQTL located in the HYI enhancer, the region corresponding 
to +​ 94,931 to +​ 95,332 bp relative to the TSS, including the somatic eQTL 
at +​ 95,097 to +​ 95,132 bp, was cloned into the firefly luciferase reporter plasmid 
pGL4.23 (Promega). Mutations were generated using the Q5 Site-Directed 
Mutagenesis kit (New England BioLabs). All inserts for the GFP and luciferase 
reporter plasmids were confirmed to match the human reference genome hg19 by 
Sanger sequencing.

Promoter and enhancer activity assays. Cell lines used to evaluate promoter 
activity were plated in six-well dishes at 300,000 cells per well, with three replicates 
per group. The next day, plasmid DNA (1 μ​g) was transfected using Lipofectamine 
3000 (Thermo Fisher). Forty-eight hours after transfection, cells were harvested 
and suspended in ice-cold PBS with 1% FBS. GFP expression was measured 
by flow cytometry on a FACSCalibur or FACSCanto (BD Biosciences). Flow 
cytometry data were analyzed with FlowJo v10 (BD Biosciences). Cells with typical 
forward (size) and side (granularity) scatter properties were further analyzed 
for GFP expression. As a negative control, cells were transfected with an empty 
lentiGuide-Puro plasmid (Addgene) for the DAAM1 experiments (Fig. 3c,d and 
Supplementary Fig. 4) or a promoterless GFP plasmid (pRMT-tGFP, Origene) for 
the MTG2 experiments (Fig. 4b). As a positive control for all GFP experiments, 
we used a plasmid with the cytomegalovirus promoter upstream of GFP. All 
flow cytometry experiments were performed at least three times. Early pilot 
experiments were often performed on single or duplicate samples with the final 
triplicate version often performed at least twice.

To evaluate the activity of the enhancer region of HYI, A375 and MDA-MB-231 
cells were plated in white, opaque, 96-well plates at 10,000 cells per well, with 
four replicates per group. Cells were transfected 24 h later using Lipofectamine 
3000 with 33 ng of total DNA: 27.5 ng of the firefly pGL4.23 constructs and 5.5 
ng of control Renilla pGL4.75 (Promega) plasmid. Firefly and Renilla luciferase 
activities were measured 48 h after transfection using the Dual-Glo Luciferase 
Assay System (Promega) according to the manufacturer’s instructions. Luciferase 
values were collected on a BioTek Synergy HT, and data were collected via Gen5 
2.01.14 software. To calculate relative luciferase values, background signal was first 
subtracted from each channel. Then, firefly luminescence was divided by Renilla 
luminescence. The average value for the wild-type enhancer was set to 1, and the 
mutated samples were evaluated in comparison to this control. Experiments in 
both cell lines were performed three times, with each experiment consisting of 
samples in quadruplicate.

DAAM1 overexpression. Wild-type MDA-MB-231 breast cancer cells were 
transfected with a plasmid encoding the full DAAM1 cDNA (Origene, RC217675). 
Cells were then selected using G418 (500 μ​g/ml) for 7 d to ensure stable expression 
of the DAAM1 construct. DAAM1 overexpression was verified by extracting total 
protein and quantifying using the Wes electropherogram (Proteinsimple) with anti-

DAAM1 antibody (clone WW-3, sc-100942, lot B1815, Santa Cruz, 1:250 dilution) 
and anti-tubulin antibody (clone YL1/2, MAB1864, lot 2886723, Millipore, 1:250 
dilution). DAAM1 expression was 5.5-fold greater in cells with the DAAM1 
overexpression construct relative to wild-type cells (Supplementary Fig. 6e).

3D collagen cell migration assays. Collagen matrices were prepared by mixing 
cells suspended in culture medium and 10 ×​ reconstitution buffer, one-to-one 
with soluble rat tail type I collagen in acetic acid (Corning)25. Sodium hydroxide 
was used to normalize pH (pH 7.0, 10–20 μ​l 1 M NaOH), and the mixture was 
placed in 48-well culture plates for polymerization at 37 °C. Final gel volumes were 
approximately 200 μ​l with the final collagen concentration set to 2.5 mg/ml. The 
polymerized cell-laden hydrogels were incubated for 24 h under a standard cell 
culture environment before imaging. Gels were then transferred to a microscope 
stage-top incubator, and cells were imaged at low magnification (10 ×​ ) every 2 min 
for 48 h. The coordinates of cell location in each time frame were determined using 
image recognition software (Metamorph/Metavue, Molecular Devices). Tracking 
data were processed to calculate cell speed using an extension of previously 
published scripts57. Cell migration assays (Fig. 3f–h) were performed two times, 
and both attempts showed the same trend.

RNA sequencing from cells in 3D culture. In Supplementary Fig. 5, cell migration 
assays were performed using wild-type MDA-MB-231 breast cancer cells and 
HT-1080 fibrosarcoma cells. 3D collagen I gels were seeded in three independent 
experiments and harvested after 24 h of culture for RNA extraction and directly 
homogenized in TRIzol reagent (Thermo Fisher). Total RNA was purified using 
the High Pure RNA Isolation kit (Roche), and the integrity of the sample was 
verified using RNA Analysis ScreenTape (Agilent Technologies). Total RNA 
samples were sequenced using the TruSeq Stranded mRNA Sample Prep kit 
(Illumina) and the Illumina MiSeq platform at a depth of >​ 25 million reads per 
sample. Paired-end reads were aligned to the hg19 UCSC human genome reference 
using Bowtie258 and streamed to eXpress59 for transcript abundance quantification.

Tumor genetic profiles integrating noncoding and coding alterations. Integrated 
genetic alteration profiles were constructed for the 810 tumors with WGS, WES 
and CNA data (Fig. 1a) as follows. Known oncogenes or tumor suppressors21 were 
combined with the set of target genes of eQTLs identified by the somatic eQTL 
analysis (see above); each of these genes was then classified as wild type (0) or 
altered (1) in each tumor, constituting its tumor genetic profile. In this profile, 
an alteration was defined as follows. Most oncogenes (for example, EGFR) were 
considered altered (activated) if impacted by a missense mutation, in-frame indel or 
copy number amplification. For oncogenes typically altered only by amplification21 
(CCND1, MDM2, MDM4, MYC, MYCL, MYCN, NCOA3 and SKP2), only copy 
number amplifications were considered as alterations and not SNVs or indels. 
Tumor suppressors (for example, CDKN2A) were considered altered (inactivated) 
if there was any type of non-silent mutation or a copy number deletion. For each 
target gene, we defined a dominant direction of regulation d ∊​ { +​ 1, −​1} as the 
sign of the coefficient (β1 in equation (1)) of its most significantly associated 
eQTL. Noncoding mutations in eQTLs that led to a transcriptional change in the 
dominant direction were considered alterations of such genes. For TERT, copy 
number amplifications in the coding region were also considered as alterations, 
as both promoter mutations and gene amplifications have been associated with 
growth advantage of tumor cells and poor prognosis of patients60, 61.

Network-based stratification to identify tumor subtypes. Network propagation29 
was used to compute the pairwise similarities among tumor genetic alteration 
profiles (see above) within the Reactome functional interaction network 
(ReactomeFI)31. Each tumor genetic profile was propagated across this network 
on the basis of a random walk model (equivalent to heat diffusion) with a restart 
probability of 0.5. After convergence, the score of each gene (temperature) 
represents its network proximity to genetic alterations. The top 70 principal 
components of these scores, representing the tumor’s network-transformed profile 
(Fig. 5a), were analyzed using the sklearn.cluster.SpectralClustering package62 
(affinity =​ k-Nearest-Neighbors, assign-labels =​ discretize, n_clusters =​ [2…​10]). 
This method first constructs a similarity graph on all pairs of tumors, where 
each tumor is connected to the k others with the shortest Euclidean distance. We 
chose k =​ 170, which ensures that the similarity graph is connected, as previously 
recommended62. Next, this graph is analyzed to partition tumors into subtypes 
at different resolutions (number of subtypes n =​ [2…​10]). Following spectral 
clustering, each set of n (parent) subtypes was compared to the n +​ 1 (child) 
subtypes to track the similarity of tumor assignments (Fig. 5b). An arrow was 
drawn from a parent to child subtype if they shared ≥​18 tumors.

Characterizing tumor subtypes with signature genes and subnetworks. For each 
subtype, we defined a set of ‘signature genes’ as those that had higher network-
transformed scores in that subtype than others (t test, Benjamini–Hochberg 
FDR <​ 0.1) and, among these, were more frequently altered in that subtype (Fisher 
exact test, FDR <​ 0.05; Fig. 5b–e). To identify subnetworks, this set was expanded 
to include ‘intermediate genes’ with relatively high network-transformed scores 
(t test, FDR <​ 0.05) that lay on the shortest paths between each pair of signature 
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genes. The union of the signature and intermediate genes was used to induce a 
subnetwork within ReactomeFI31, referenced in the main text as the corresponding 
‘pathway’ impacted in that subtype (Fig. 5d). An additional filter was applied in 
Fig. 5e and Supplementary Fig. 9a, where we only visualized the signature genes 
with ten or more mutations and the shortest paths among them with at most one 
intermediate gene. All networks were visualized in Cytoscape63.

Survival analysis. We used the coxph package in R statistical software to fit Cox 
proportional-hazard models64. P values were calculated by log likelihood ratio test. 
To evaluate whether the subtype classifications provided additional prognostic 
power beyond the baseline survival expectancy due to cancer tissue, we compared 
the likelihood for the complete model, including NBS-derived molecular subtypes s 
and cancer tissues c as covariates, against that of a null model that included cancer 
tissues c only

λ λ β β β∣ = + +Complete model t s c t s c: ( , ) ( ) exp( ) (4)0 0 1 2

λ λ β β| = +Null model t c t c: ( ) ( )exp( ) (5)0 0 2

where λ t( )0  is the baseline hazard function. Then, a log likelihood ratio statistic 
was defined as

= −










D 2 ln likelihood for null model
likelihood for complete model

(6)

Finally, a chi-squared test P value was calculated on the basis of D with the number 
of degrees of freedom equal to the number of NBS-derived molecular subtypes.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. Custom codes for annotating mutations, somatic eQTL analysis, 
validation of recurrence, motif analysis and NBS are available through GitHub  
(see URLs).

Data availability. The somatic mutations of the 930 tumors are publicly available 
(see URLs). RNA-seq data are accessible through GEO series accession GSE101209.
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