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SUMMARY

The metabolic pathways fueling tumor growth have
been well characterized, but the specific impact of
transforming events on network topology and
enzyme essentiality remains poorly understood. To
this end, we performed combinatorial CRISPR-
Cas9 screens on a set of 51 carbohydrate meta-
bolism genes that represent glycolysis and the
pentose phosphate pathway (PPP). This high-
throughput methodology enabled systems-level
interrogation of metabolic gene dispensability, inter-
actions, and compensation across multiple cell
types. The metabolic impact of specific combinato-
rial knockouts was validated using 13C and 2H
isotope tracing, and these assays together revealed
key nodes controlling redox homeostasis along the
KEAP-NRF2 signaling axis. Specifically, targeting
KEAP1 in combination with oxidative PPP genes
mitigated the deleterious effects of these knockouts
on growth rates. These results demonstrate how our
integrated framework, combining genetic, transcrip-
tomic, and flux measurements, can improve elucida-
tion of metabolic network alterations and guide pre-
cision targeting of metabolic vulnerabilities based
on tumor genetics.

INTRODUCTION

Cancer cells are characterized by unchecked cellular prolifera-

tion and the ability to move into distant cellular niches,

requiring a rewiring of metabolism to increase biosynthesis

and maintain redox homeostasis. This reprogramming of

cellular metabolism is now considered an essential hallmark

of tumorigenesis (Pavlova and Thompson, 2016). Since the
Mole
metabolic network is highly redundant at the isozyme and

pathway levels, reprogramming is an emergent behavior of

the network and manifests itself in non-obvious ways. For

instance, a unique metabolic feature of tumor cells is a reliance

on aerobic glycolysis to satisfy biosynthetic and ATP demands

(Hensley et al., 2016). This metabolic rewiring is coordinated, in

part, by the selective expression of distinct isozymes, which

may benefit the cell by offering different kinetics or modes of

regulation (Chaneton et al., 2012; Christofk et al., 2008; Patra

et al., 2013). However, isozyme switching is not solely a conse-

quence of genomic instability and instead can be a coordinated

step in tumorigenesis that facilitates cancer cell growth and

survival (Castaldo et al., 2000; Guzman et al., 2015). Therefore,

understanding which isozymes and pathway branch points are

important and how they interact with and compensate for one

another is necessary to effectively target metabolism in can-

cer cells.

In this regard, the advent of CRISPR screening technology

now provides a rapid, high-throughput means to functionally

characterize large gene sets (Shalem et al., 2014; Wang

et al., 2014). This analysis has led to greater annotation of

essential genes in human cancers and context-dependent

dispensability (Hart et al., 2015; Wang et al., 2015). Corre-

spondingly, single-gene knockout (SKO) CRISPR screens

have been able to identify important genes in redox homeosta-

sis and oxidative phosphorylation in conjunction with meta-

bolic perturbations (Arroyo et al., 2016; Birsoy et al., 2015).

However, in the context of mammalian metabolism the SKO

CRISPR approach comes with limitations, as redundancies

and plasticity of the metabolic network may allow the system

to remodel around an SKO, thereby confounding analyses of

impact on cellular fitness. To overcome this challenge, our

group and others recently developed combinatorial gene KO

screening approaches that may provide a more suitable

platform to study gene dispensability and also systemati-

cally map their interactions (Boettcher et al., 2017; Chow

et al., 2017; Han et al., 2017; Shen et al., 2017; Wong

et al., 2016).
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Figure 1. Experimental Design

(A) Schematic pathway diagram of carbohydrate metabolism and list of 51 targeted enzymes.

(B) Schematic overview of the combinatorial CRISPR-Cas9 screening approach. A dual-gRNA library, in which each element targets either gene-gene pairs or

gene-scramble pairs, to assay dual and single gene perturbations, was constructed from array-based oligonucleotide pools. Competitive growth-based screens

were performed, and the relative abundance of dual-gRNAs was sampled over multiple time points. The fitness and genetic interactions were computed via a

numerical Bayes model and key hits were validated using both competitive cell growth assays and measurement of metabolic fluxes.

See also Figure S1 and Table S1.
Utilizing this combinatorial CRISPR genetic screening format,

coupled with interrogation of metabolic fluxes, we systematically

studied the dispensability and interactions within a set of genes

encoding enzymes involved in carbohydrate metabolism,

including glycolysis and the pentose phosphate pathway

(PPP). We illustrated functional relationships between dominant

and minor isozymes in various families and discovered multiple

genetic interactions within and across glucose catabolic path-

ways. Aldolase and enzymes in the oxidative PPP (oxPPP)

emerged as critical drivers of fitness in two cancer cell lines,

HeLa and A549. Distinctions in this dependence are influenced

by the KEAP1-NRF2 signaling axis, which coordinates the

cellular antioxidant pathway in response to redox stress. We

found loss or mutation of KEAP1 E3-ubiquitin ligase upregulates

NRF2-mediated transcription of genes involved in glutathione

(GSH) synthesis and NADPH regeneration, making the oxPPP

less important for NADPH production and less critical for cell

growth in these contexts. Thus, mutation status of the KEAP1-

NRF2 regulatory axis should be consideredwhen designing ther-

apeutic strategies that target redox pathways in cancer cells.
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RESULTS

Combinatorial CRISPR-Cas9 Screening to Probe
Metabolic Networks
To systematically study the dispensability and interactions of

genes underlying carbohydrate metabolism, we applied a

combinatorial CRISPR screening approach (Shen et al., 2017)

to interrogate singly and in combination a set of 51 genes, en-

compassing glycolysis, gluconeogenesis, PPP, and glucose en-

try into the TCA cycle (Figure 1A). We generated three single

guide RNAs (sgRNAs) per gene such that nine unique constructs

were present for every gene pair, resulting in a dual-sgRNA li-

brary consisting of 459 elements targeting genes individually,

as well as 11,475 unique elements targeting two different genes

simultaneously (Table S1). The dual-sgRNA constructs were

synthesized from oligonucleotide arrays, cloned into a lentiviral

vector, and then transduced into HeLa or A549 cells stably ex-

pressing Cas9 (Figures 1B, S1A, and S1B). Through sampling

of sgRNA frequencies at days 3, 14, 21, and 28 (Figures S1C

and S1D), both robust gene-level fitness values (fg) and



interaction scores (pgg) were computed. Finally, impact of SKOs

and dual-gene knockouts (DKOs) on cellular growth and meta-

bolic fluxes was validated in a targeted fashion.

Mapping Metabolic Gene Dependencies in Glucose
Catabolism
Upon analyzing fitness scores for individual gene KOs across the

metabolic network (Table S2), we noted that for most (but not all)

isozyme families, a dominant gene showed the greatest indis-

pensability (Figures 2A and S2A). Consistent with the notion of

a ‘‘cancer-specific’’ isozyme (Hay, 2016), HK2, ALDOA, PGK1,

and PFKL all showed a fitness defect greater than 2-fold higher

as compared to other isozymes. However, not all families exem-

plified this dynamic, with ENO1/ENO3 and the lactate dehydro-

genase (LDH) family showing similar dispensability across gene

members (Figures 2A and S2A). The general dispensability of

SKOs within the LDH family is notable given the critical role of

glycolysis in the maintenance of cancer cell homeostasis and

concomitant need to regenerate cytosolic NAD+ when relying

on glycolytic flux (Vander Heiden et al., 2009). Importantly nodes

central to the regeneration of reducing equivalents (NADH and

NADPH)—GAPDH, G6PD, and PGD—were found to be critical

for cellular growth (Figures 2A and S2A).

We hypothesized that gene expression could explain why

certain genes were less dispensable and why certain families

did not display a dominant member. Indeed, lower fitness score

may be associated with higher gene expression (R = �0.461,

p = 6.7e�04 and R = �0.429, p = 1.7e�03 for HeLa and A549

cells, respectively). These expression-driven differences also

partially explained dynamicswithin isozyme families. For instance,

ALDOA had a much lower fitness score and higher gene expres-

sion as compared to ALDOB and ALDOC (Figure 2B). ENO1 and

ENO3 both displayed negative fitness scores and both weremore

highly expressed than ENO2 (Figures 2B and 2C). However, the

dispensable isozyme families LDH and PDH (key for maintenance

of glycolytic flux and oxidation of pyruvate, respectively) were also

found to be highly expressed in both cell types (Figures 2B and

2C). With each family having more than two member enzymes,

this result demonstrates that vital functions of cell metabolism

can be carried out by multiple genes and show surprising resil-

iency through isozyme compensation or network behavior.

To this end, SKOs correlated well (R = 0.718, p = 3.1e�09)

across both cell lines (Figure 2C). This correlation extended to

expression of all enzymes (R = 0.938, p < 2.2e�16). Furthermore,

HeLa fitness scores correlated well with previously published

HeLa screening data (R = 0.664, p = 1.435e�07) (Hart et al.,

2015). However, these results exemplify the challenge in under-

standing metabolic topology through screening individual

genes: few metabolic genes are essential, and essential ele-

ments are typically conserved across all cell types.

We subsequently hypothesized that gene interactions could

provide information on metabolic network topology and cell-

specific adaptations in these pathways. Indeed, a notable num-

ber of gene pairs were found to significantly interact (Figures 2D

and 2E; Table S3). Specifically, after filtering for genes with reads

per kilobase of transcript per million mapped reads (RPKM) <

0.15, we observed 35 interactions (Z score <�3) in the combined

HeLa and A549 interaction network (Figure S2B; Table S4), of
which 10 (�30%) have been previously reported as protein-pro-

tein interactions (Stark et al., 2006). Five gene pair interactions

were shared across both cell types.

Notably, the conserved interaction of ENO1/ENO3 demon-

strates the possible compensation observed in SKO results (Fig-

ure 2A). Previous results have demonstrated that passenger

deletion of ENO1 in glioblastoma (GBM) cell lines increases their

dependence on ENO2 and generates a GBM synthetic lethality

(Muller et al., 2012). As ENO2 is only expressed in neural tissues,

our results suggest that ENO1 and ENO3 may compensate for

one another in these cell lines. Additionally, redox-associated

genes GAPDH and PGD had many interacting partners, consis-

tent with their negative SKO fitness scores and metabolic func-

tions (Figure 2E). As NAD(P)H is required for both bioenergetics

and biosynthetic reactions, alteration of cofactor balance or

regeneration fluxes could have large impacts on distal reactions

within the network.

Validation of Significant SKO and DKO Results on
Cellular Fitness and Metabolic Fluxes
Next, to functionally validate the screening results, competition

assays and metabolic flux measurements were conducted in

the presence of SKO and DKO pairs. Competition assays were

performed by mixing control tdTomato+ cells expressing an

empty vector, with tdTomato� cells expressing a gRNA of inter-

est (Figure 3A), and relative growth rates were assayed by

quantifying the ratio of ± cells in the mixture via flow cytometry

(Figure 3B). Dominant family member isozyme fitness was

observed in the ALDO family (Figure 3C), and significant gene in-

teractions over additive SKO effects were observed in multiple

gene pairs (Figures 3D and 3E). Correspondingly, perturbations

in glycolytic flux were observed through dynamic labeling of me-

tabolites (i.e., pyruvate, lactate, and alanine) from 13C-labeled

glucose ([U-13C6]glucose) (Figure 3F). Notably, DKO of ENO1

and ENO3 significantly decreased flux through glycolysis

compared to control and SKOs (Figures 3G, S3A, and S3B)

and also displayed significantly lower fitness (Figure 3H). Finally,

we applied specific 13C and 2H tracers to quantify how the

oxPPP contributed to NADPH regeneration (Figure 3I) (Lee

et al., 1998; Lewis et al., 2014). SKO of oxPPP enzymes was

indeed observed to lower flux (Figures 3J and 3K) and fitness

(Figures 3L and S3C) through this pathway.

Comparison of Metabolic Liabilities across Cell Lines
Reveals Key Role of KEAP1-NRF2
We next focused on differences in the screens of these two cell

lines to explore how oncogenic status contributes to metabolic

reprogramming. By conducting screens in A549 and HeLa cells

and comparing fitness results, we could also gain insights into

the impact of SKO results in combination with endogenous mu-

tations. Notably, screening results suggested and we validated

that SKO of oxPPP genes (i.e., G6PD and PGD) impacted the

growth and survival of HeLa cells more dramatically than A549

cells (Figures 4A, S4A, and S3C) with observed editing rates in

each cell line R95% (Figure S3D). Intriguingly, the expression

of G6PD and PGD in these cell lines showed the opposite trend,

with A549 cells expressing these genes at significantly higher

levels but having a lower dependence on them to maintain
Molecular Cell 69, 699–708, February 15, 2018 701
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Figure 2. Combinatorial CRISPR Screens Reveal Metabolic Network Dependencies

(A) SKO fitness scores for HeLa cells, plotted as fg (day
�1), with a more negative score representing a loss in fitness with SKO. Plotted as mean ± SD.

(B) Multi-isoform family member fitness scores and gene expression for HeLa (top) and A549 (bottom) cells.

(C) Relative comparison of SKO fitness scores (fg) across both cells.

(D) Relative comparison of genetic interaction scores (pgg) across both cell lines.

(E) Combined genetic interactionmap of both cell lines. Green solid line represents interactions observed in both cell lines. Red and blue lines represent significant

genetic interactions in A549 and HeLa cells, respectively.

See also Figure S2 and Tables S2, S3, and S4.
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Figure 3. Screening Results Validated through Targeted Fitness and Metabolic Flux Measurements

(A) Schematic of cell competition assay used to validate growth. A Cas9-expressing cell is transducedwith an sgRNA lentivirus of interest (tdTomato�) andmixed

with a control Cas9-expressing cell transduced with a tdTomato lentivirus (tdTomato+). The cells are grown together and the percentage of control (tdTomato+)

cells is used to assess relative fitness of SKO.

(B) Non-targeting control (top) is stable for duration of experiment and shows no fitness changes. SKO of ALDOA (bottom) shows decreased fitness over time as

control cells take over population.

(C) SKO competition assay of ALDO isozyme family. ALDOA shows greatest loss of fitness.

(D) Growth validation of PFKM/PGD genetic interaction. DKO (green) shows significantly greater decrease in fitness over additive SKO effect (black).

(legend continued on next page)
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growth and viability (Figures 4A and S4A). As the oxPPP is critical

for maintaining redox homeostasis (i.e., NAPDH regeneration)

(Kuehne et al., 2015), mutations within control points of redox

metabolism could drive this differential sensitivity and further

extend the interactions of metabolic genes to known oncogenes

or tumor suppressors.

In this regard, A549 non-small-cell lung cancer (NSCLC) cells

harbor a loss-of-function mutation inKEAP1while this regulatory

axis is functional in HeLa cells. Loss-of-function mutation of

KEAP1 is observed in 20%–50% of NSCLCs (Singh et al.,

2006). KEAP1 is a redox-sensitive E3 ubiquitin ligase that targets

oxidized NRF2, the master transcriptional regulator of the

cellular antioxidant response (DeNicola et al., 2011; Ishii et al.,

2000; Thimmulappa et al., 2002), and previous work has demon-

strated an ability of NRF2 to alter metabolic fluxes (DeNicola

et al., 2015; Mitsuishi et al., 2012; Thimmulappa et al., 2006).

Consequently, we hypothesized that the mutational status of

this pathway potentially influenced oxPPP sensitivity.

KO of KEAP1 in HeLa cells significantly increased NRF2 levels

and expression of oxPPP enzymes G6PD and PGD (Figures S3E

and 4B), consistent with the increased expression levels

observed in A549 cells (KEAP1-deficient) relative to HeLa cells

(KEAP1 WT [wild-type]) (Figure S4A, bottom left). We next deter-

mined howoxPPP flux contributed to cytosolic NADPHpools us-

ing [3-2H]glucose in KEAP1 KO cells (Lewis et al., 2014). For all

sgRNAs we observed a significant decrease in labeling (Fig-

ure 4C), which indicates higher pathway flux and loss of label

via GSH-mediated H-D exchange (Zhang et al., 2017). This

enhanced GSH buffering capacity is consistent with the greater

dispensability of oxPPP enzymes observed in A549 cells as

compared to HeLa cells (Figure 4A).

We next hypothesized that KEAP1 mutational status could

directly alter sensitivity to SKO of oxPPP enzymes and quantified

the impact of such SKOs on the fitness and metabolism of an

isogenic panel of A549 cells. Ectopic expression of WT KEAP1

decreased NRF2 stabilization as compared to constitutively

active C273S mutant KEAP1 (Zhang and Hannink, 2003) (Fig-

ure S4B). Interestingly, overexpression of either mutant or WT

KEAP1 increased NRF2 levels as compared to parental cells

(Figure S4B). Re-expression of WT KEAP1 in A549 cells

increased cell sensitivity to PGD KO as compared to C273S

KEAP1 mutant cells (Figures 4D and S4C), highlighting the role

of KEAP1 in regulating oxPPP enzyme expression and flux.

Consistent with these fitness results and the above metabolic

measurements, WT KEAP1 expression increased the contribu-
(E) Growth validation of ALDOA/GAPDH interaction.

(F) Atom transition map depicting glycolysis. Fully labeled [U-13C6]glucose leads

(G) Metabolic validation of DKO interaction in ENO1/ENO3. DKO significantly low

nificance (p < 0.05) for all conditions as compared to DKO.

(H) Growth validation of ENO1/ENO3 interaction.

(I) Atom transition map depicting oxPPP tracing. [3-2H]glucose labels cytosolic

glucose is changed by shunting of glucose through oxPPP.

(J) Metabolic validation of PGD SKO at day 4. oxPPP contributes less NADPH w

nificance by non-overlapping confidence intervals.

(K) Metabolic validation of G6PD SKO at day 7. Less glucose is shunted through

(L) SKO competition assay of oxPPP enzymes.

All experiments were performed in HeLa cells.

(C–E, G, H, K, and L) Data plotted as mean ± SEM. See also Figure S3.
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tion of PGD to cytosolic NADPH regeneration (Figure 4E) and

decreased expression of oxPPP enzymes (Figure 4F).

Finally, we hypothesized that KEAP1 remodels redox meta-

bolism due to its canonical role in the cellular antioxidant

response. Indeed, expression of WT KEAP1 was found to

decrease expression of both NADPH-regenerating enzymes

and those involved in GSH synthesis (Figure 4G). Consistent

with decreased expression of GSH synthesis enzymes, intracel-

lular GSH levels were decreased by 45% upon expression of WT

KEAP1 (Figure 4H). Presumably, the decreased buffering capac-

ity by GSH and lower expression of other NADPH regenerating

contribute to the increased dependence on oxPPP flux observed

in cells expressing WT KEAP1. A model therefore emerges from

our screening results, whereby KEAP1 mutational status alters

the relative importance of the oxPPP by modulating expression

of the redox network to drive GSH synthesis and regeneration

(Figure 4I).

DISCUSSION

While it is clear that cancer cells rely on aerobic glycolysis to

maintain biosynthetic fluxes and ATP demands (Hsu and Saba-

tini, 2008), how the underlying metabolic network topology

changes in response to specific oncogenic events is not fully

clear. In this study, we comprehensively interrogated metabolic

gene dispensability, interaction, and compensation through a

combinatorial CRISPR-Cas9 screening approach. Key nodes

within glycolysis were found to significantly interact with one

another (e.g., ALDOA and PGD) in an emergent network

behavior. Many of these interactions were conserved across

cells of different origin, implying such enzyme interaction pairs

harbor some function that warrants future interrogation.

Other interactions were demonstrative of metabolic compen-

sation within isozyme families (e.g., ENO1 and ENO3) and

consistent with previously described mechanisms of metabolic

synthetic lethality (Dey et al., 2017; Muller et al., 2012). These

observed network features present a new opportunity through

combinatorial (pairwise) screening to understand if/how cells

can adapt around loss of a metabolic enzyme. Knowing if a solid

tumor of interest is pharmacologically vulnerable to a metabolic

inhibitor a priori will allow for future precision medicine

applications.

In fact, by comparing relative SKO scores across cell types,

we were able to elucidate a paradoxical resistance to targeting

the oxPPP along the KEAP1-NRF2 axis. Even though cells
to fully labeled pyruvate, lactate, and alanine.

ered flux through glycolysis over control or SKOs. y indicates statistical sig-

NADPH through oxPPP. Labeling on glycolytic intermediates from [1,2-13C]

ith PGD KO. Plotted as mean ± 95% CI. Asterisk (*) indicates statistical sig-

oxPPP with G6PD KO.
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Figure 4. KEAP1 Mutational Status Alters Redox Metabolism and Impact of oxPPP Gene KOs on Cellular Fitness

(A) Plot of cell-specific fitness scores for expressed genes. Positive scores are SKOs that are essential in A549s and negative scores are SKOs more essential in

HeLa cells. The cell-specific essentiality scores respond to the Z score transformed residuals of linear regression of HeLa and A549 SKO fitness, shown in

Figure S4A.

(B) Immunoblot of KEAP1 SKO in HeLa cells.

(C) Contribution of oxPPP to cytosolic NADPH with KEAP1 SKO in HeLa cells. Plotted as mean ± 95% CI. Asterisk (*) indicates statistical significance by non-

overlapping confidence intervals.

(D) Relative PGD SKO effect in A549s with KEAP1 mutant panel.

(E) Contribution of oxPPP to cytosolic NADPH in A549s with KEAP1mutant panel. Plotted as mean ± 95%CI. Asterisk (*) indicates statistical significance by non-

overlapping confidence intervals.

(F) Immunoblot of A549s with KEAP1 mutant panel.

(legend continued on next page)

Molecular Cell 69, 699–708, February 15, 2018 705



potently upregulated expression of oxPPP enzymes upon loss of

KEAP1, cells were less vulnerable to KO of enzymes in this meta-

bolic pathway. In this case, alternate NADPH regeneration path-

ways and increased antioxidant buffering by GSH pools provide

compensation and survival benefits to cells. Our NAPDH tracing

data demonstrated that cells lacking functional KEAP1 exhibit

higher oxPPP flux, as evidenced by reduced labeling due to

increased H-D exchange through GSH-related pathways (Zhang

et al., 2017). Indeed, elevated oxPPP enzyme levels and

increased GSH pools would specifically increase exchange

flux, resulting in the observed decrease in labeling downstream

of [3-2H]glucose. The integration of such functional measure-

ments with genetic screening and transcriptional results pro-

vides better context to interpret the observed metabolic reprog-

ramming downstream of KEAP1-NRF2.

Our results suggest that KEAP1 mutational status must be

considered when targeting the oxPPP therapeutically. In fact,

recent work has implicated KEAP1 mutational status as a driver

of metabolic reprograming and potential targeting of gluta-

minase in pre-clinical models of lung adenocarcinoma (Romero

et al., 2017). Consistent with our findings, KEAP1 mutation in-

creases intracellular GSH levels and need for cysteine, causing

an increased need for glutamine anaplerosis to support gluta-

mate/cysteine antiporter flux (SLC7A11) (Muir et al., 2017; Ro-

mero et al., 2017). Other recent work has also implicated

KEAP1 mutational status as a driver of chemotherapeutic resis-

tance in preclinical models of lung cancer and further demon-

strates the need for new paradigms connecting oncogenicmuta-

tions to cancer cell survival (Krall et al., 2017).

Moving forward, it will be important to perform such screens

across a larger number of cell types to elucidate a more compre-

hensive picture of metabolic network reprogramming. The high-

throughput methodology presented here increases the feasibility

of such studies. We note also that comparing the absolute

fitness values in screens across cell lines can be confounded

by various factors. These include differences in relative cell

growth and expression of CRISPR effectors among others, and

thus devising new strategies for normalization will be valuable

to improve the utility of future screening datasets. We also

note the critical importance of sgRNA efficacy and anticipate

that continued improvements in sgRNA design (Chari et al.,

2015; Doench et al., 2016; Erard et al., 2017) will be critical to

improving consistency and signal to noise in the assays. Finally,

layering in data from complementary perturbation strategies

such as CRISPR activation/inhibition and small molecule inhibi-

tion should enable charting of more comprehensive networks

underlying cellular function and transformation.

Discovery of the unique metabolic features in transformed

cells has spurred much interest in exploiting metabolic vulnera-

bilities for drug discovery (Vander Heiden, 2011). In fact, meta-

bolic inhibitors have been developed as single-agent therapeu-

tics and combination therapeutics for many different cancer
(G) Normalized relative gene expression of A549s with KEAP1 mutant panel.

(H) GSH measurement in A549 with KEAP1 mutant panel (n = 5).

(I) Schematic of how KEAP1 mutational status alters relative metabolism and ox

(D, G, and H) Data plotted as mean ± SEM. See also Figure S4.
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types (Tennant et al., 2010). However, these agents have found

varying success in the clinic due an inability to determine proper

cancer types in preclinical development. While cancer cells

share common hallmarks of metabolic reprogramming, cell-of-

origin and tumorigenic drivers uniquely influence the direction

and extent of metabolic reprogramming. The new paradigm of

incorporating combinatorial CRISPR screening, transcriptomic

information, and metabolic flux measurements presented here

will provide a new platform to address this limitation. By interro-

gating metabolism at the network level, new therapeutic targets

may be identified, and clinicians may become better equipped at

identifying the most responsive patient populations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Vinculin Abcam ab18058

Rabbit monoclonal anti-G6PD CST 12263S

Mouse monoclonal anti-PGD SCBT sc-398977

Rabbit monoclonal anti-Nrf2 CST 12721S

Rabbit polyclonal anti-HA Abcam ab9110

Rabbit polyclonal anti-KEAP1 Proteintech 10503-2-AP

Goat anti-Rabbit, HRP-linked CST 7074S

Horse anti-Mouse, HRP-linked CST 7076S

Bacterial and Virus Strains

ElectroMAX Stbl4 Competent Cells Thermo Fisher Scientific 11635018

Chemicals, Peptides, and Recombinant Proteins

[U-13C6]glucose Cambridge Isotope Labs CLM-1396

[3-2H]glucose Omicron Biochemicals GLC-034

BsmBI New England Biolabs R0580L

T4 DNA Ligase New England Biolabs M0202M

Critical Commercial Assays

Glutathione Assay Kit Sigma CS0260

RNeasy Mini Kit QIAGEN 74104

cDNA Reverse Transcription Kit Thermo Fisher Scientific 4368814

iTaq Universal SYBR Green BioRad 1725121

Clarity ECL Substrate BioRad 1705060

Lipofectamine 2000 Thermo Fisher Scientific 11668019

KAPA HiFi HotStart Ready Mix Kapa Biosystems KK2602

Gibson Assembly Master Mix New England Biolabs E2611L

Deposited Data

A549 RNA-seq ENCODE project GEO: GSM758564

HeLa RNA-seq ENCODE project GEO: GSM765402

Western blot images Mendeley Data https://doi.org/10.17632/dnkdmryc9v.1

Experimental Models: Cell Lines

A549 ATCC CRM-CCL-185

HEK293FT ATCC N/A

A549-AAVS-Cas9-Hygro GeneCopoeia SL504

HeLa-AAVS-Cas9-Hygro GeneCopoeia SL503

Oligonucleotides

Oligonucleotide pool with dual-gRNA

spacers, see Table S1

CustomArray N/A

Primer for amplification of array – forward:

OLS_gRNA-SP_F: TATATATCTTGTGGA

AAGGACGAAACACCG

This paper N/A

Primer for amplification of array – reverse:

OLS_gRNA-SP_R: CTTATTTTAACTTGCTA

TTTCTAGCTCT

This paper N/A

Primer for NGS prep – forward: ACACTC

TTTCCCTACACGACGCTCTTCCGATCTTA

TATATCTTGTGGAAAGGACGAAACACCG

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer for NGS prep – reverse: GACTGGAG

TTCAGACGTGTGCTCTTCCGATCTCCTTA

TTTTAACTTGCTATTTCTAGCTCTA

This paper N/A

NEBNext Multiplex Oligos for Illumina New England Biolabs E7335S

Individual gRNA cloning primers, see Table S1 This paper N/A

RT-PCR primers, see Table S1 This paper N/A

Recombinant DNA

LentiGuide-puro vector Addgene 52963

pMDG.2 Addgene 12259

pCMVR8.2 Addgene 12263

Software and Algorithms

Mali-dual-crispr-pipeline Shen et al. (2017) https://github.com/ucsd-ccbb/mali-dual-

crispr-pipeline
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prashant

Mali (pmali@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions
HEK293T, A549, HeLa-AAVS-Cas9-Hygro, A549-AAVS-Cas9-Hygro cells were grown in DMEM supplemented with 10%FBS, 2mM

L-glutamine, 100 units/mL of penicillin, 100 mg/mL of streptomycin, and 0.25 mg/mL of Amphotericin B. HeLa-AAVS-Cas9-Hygro and

A549-AAVS-Cas9-Hygro cells were purchased from GeneCopoeia.

METHOD DETAILS

Dual-gRNA library design and cloning
A set of 51 genes, encompassing glycolysis, gluconeogenesis, pentose phosphate pathway, and glucose entry into the TCA

cycle were selected for this study. Three unique 20-bp sgRNAs were designed for each target gene and three scrambled, non-tar-

geting sequence absent from the genome were used as control. The dual sgRNA construct library comprised all pairwise gRNA

combinations between either two genes or a gene and a scramble, resulting in 11,475 double-gene-knockout constructs and 459

single-gene-knockout constructs. The dual-gRNA library was generated as previously described (Figure S1A) (Shen et al., 2017).

Briefly, the oligonucleotides with dual-gRNA spacers were synthesized by CustomArray, amplified and assembled into the

LentiGuide-Puro vector (Addgene #52963). Independent bacterial clones obtained in step I library were counted to ensure �50 3

library coverage. Subsequently, the step I library was digested by BsmBI and an insert contained a gRNA scaffold and a mouse

U6 promoter were cloned in the middle of two spacers. Again, �50 3 library coverage was ensured.

Lentivirus production
One 15cmdish of HEK293T cells at 60%confluent were transfectedwith 3 mg PMD2.G, 12 mg of lenti-gag/pol/PCMVR8.2, and 9 mg of

lentiviral vector (library or single constructs) using 36 mL of Lipofectamine 2000.Medium containing viral particles were harvested 48 h

and 72 h after transfection, then concentrated with Centricon Plus-20 100,000 NMWL centrifugal ultrafilters, divided into aliquots and

frozen at �80�C.

CRISPR/Cas9 dual-gRNA screening
CRISPR Cas9 nuclease stable expressing HeLa and A549 cells were obtained fromGeneCopoeia and grown in DMEMmedium with

10% FBS and Antibiotic-Antimycotic. Hygromycin B was added at the concentrations of 200 mg/ml or 100 mg/ml for HeLa and A549

cells, respectively. For each screen, cells were seeded in three 15cm dishes at a density of 13 10^7 per ml and transduced with the

lentiviral dual gRNA library at a low MOI of 0.1-0.3. Puromycin was added at 48 h after transduction at a concentration of 5 mg/ml.

Then the cells were cultured and passaged for every 3-4 days while 13 10^7 cells were sampled at days 3, 14, 21 and 28 and stored

at �80�C until extraction of genomic DNA. Two biological replicates of the screens were performed for each cell line.
e2 Molecular Cell 69, 699–708.e1–e6, February 15, 2018

mailto:pmali@ucsd.edu
https://github.com/ucsd-ccbb/mali-dual-crispr-pipeline
https://github.com/ucsd-ccbb/mali-dual-crispr-pipeline


Quantification of dual gRNAs abundance
Genomic DNA of the cells were purified using QIAGEN DNeasy Blood and Tissue Kits. To amplify the dual gRNAs from each sample,

we used 20 mg of genomic DNA as template across ten 50 mL PCR reactions with Kapa Hifi polymerase. By testing the amplification

efficiency, we used 22 - 24 cycles at an annealing temperature of 55�C with the following primers:

Forward: ACACTCTTTCCCTACACGACGCTCTTCCGATCTTATATATCTTGTGGAAAGGACGAAACACCG;

Reverse: GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTTATTTTAACTTGCTATTTCTAGCTCTA.

The amplicons were pooled and purified with Agencourt AMPure XP bead at a double selection of 0.553 and then 0.83. The sam-

ples were quantified with Qubit dsDNA High Sensitivity Kit. To attach Illumina sequencing adaptors and indexes, we used 50 ng of

purified step I PCR product as template across four 50 mL PCR reactions with Kapa Hifi polymerase using primers of Next Multiplex

Oligos for Illumina (New England Biosciences). 7 or 8 PCR cycles were carried out at an annealing temperature of 72�C. The PCR

product were purified twice with Agencourt AMPure XP bead at 0.83 ratio, quantified, pooled and sequenced on an Illumina HiSeq

rapid-run mode for 75 cycles paired-end runs.

Computation of single and double gene knockout fitness and genetic interaction scores
Analysiswasperformedwith a previously reported softwarepipeline constructed fromPython, R andJupyter Notebooks (https://github.

com/ucsd-ccbb/mali-dual-crispr-pipeline). The followingdetails areadapted fromourpublishedpaper (Shenetal., 2017).Briefly, the two

gRNAsequenceswere extracted and trimmed to 19bp from30 end, and then aligned to the known library sequenceswith onemismatch

allowed.We determined aminimum threshold for read counts based on the histograms andmasked out pairwise gRNA constructs that

have read counts below the threshold. The read counts were used for analysis of fitness and genetic interaction scores as follows:

(1) Estimation of fitness of each pairwise gRNA construct. The logarithmic transformation of the frequency of each pairwise gRNA

construct in the population is:
xc = log2

NcP
cNc

;

where Nc is the number of cells in the population expressing construct c. We assume that each cell subpopulation grows

exponentially:

NcðtÞ=Ncð0Þ3 2ðfc + f0Þt;

where t is a given time point; fc is the fitness of construct c; f0 is the absolute fitness of reference cells which don’t express any con-

structs. Combining these two equations, we get:

xcðtÞ= ac + fct � log2

X
c

2ac + fct;

where ach xcð0Þ as the initial condition and
P
c
2xc = 1 in the whole population. Fitting to this equation from experimental data of fre-

quencies XcðtÞ, we minimize the sum of squares:

Eðfac; fcgÞ=
X
c

X
t

½XcðtÞ � xcðtÞ�2:

Here E is invariant under the substitution fc/ fc + d, where d is an arbitrary constant, which can be fixed by setting the mean non-

targeting gRNA fitness to zero. To resolve this, one should find the minimum of the function:

ElhE � l

 X
c

2ac � 1

!
;

where l is the Lagrange multiplier. This solution equals:

vEl

vac
=
vEl

vfc
=
vEl

vl
= 0:

When the number of constructs is large,
P
c
1[1, the approximation solution is:

fc =
CovðXc; tÞ
VarðtÞ + d

and

ac =Xc � fct � log2

X
c

2Xc�fct;

where the bars indicate means over time points. The ac values do not depend on the choice of d.
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e4
(2) Estimation of single gRNA fitness and gRNA–gRNA interactions. For each construct containing gRNAs g and g
0
, we define:
fc = fg + fg0 +pgg
0 ;

where pgg0 is the gRNA-gRNA interaction scores. fc is calculated from step (1). fg values are found by robust fitting of this equation.

The gRNA-level pgg0 scores are the residuals of the robust fit.

(3) Computation of gene level fitness based on weighted average of gRNA fitness. We ranked the three gRNAs targeting to the

same gene as rðgÞ˛f0; 1;2g in ascending order of
��fg �� . The gene-level fitness values are calculated as the weighted means

of gRNA fitness values with weights given by the squares of gRNA ranks, r2ðgÞ. The gene-level interaction scores are calcu-

lated as the weighted means of gRNA-gRNA interaction scores with weights given by the products of gRNA ranks, rðgÞrðg0 Þ.
(4) Correction by replicates. As we performed biological replicates for each experiment, we combine replicates for more power

rather than looking for two fc separately. We fit a single optimal fc from all data points excludes those below the threshold, with

the assumption that fc does not change across experiments while the initial conditions ac may be different. The raw P value

associate to each fc is:
tc =
fc

SEðfcÞ;

where SEðfcÞ is the standard error of fc:

SEðfcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

½XcðtÞ � xcðtÞ�2
r , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnc � 2Þ
X
t

�
t2 � t

2
�s
:

The raw P values then are transformed into posterior probabilities, PPc, according to the theory of Storey. To scale the genetic

interaction scores for comparison across different experiments, we calculated a genetic interaction z score by dividing the pgg0 of

each two genes by s:d:=
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
3SEðfcÞ of genetic interaction pairs in a given experiment. We consider an interaction to be a mean-

ingful candidate if it has an absolute z score above 3.

(5) Calculation of false discovery ratesby numerical Bayesian ensemble of experiments.Weassign afitness value toeachconstruct

c on the basis of change in fitness relative to the standard deviation of repeated-measurements. The assigned value is either

0 with probability (1� PPc), or a random number within fc ± s:d:We perform 1000 permutations and reported gene level fg and

pgg0 for each permutation. The false discovery rate (FDR) of genetic interactions (p) is calculated as the odds ratio between the

observed andpermuted results in the null model, which is obtained bymean-centering of themarginal distribution of everypgg0 .

Single-gRNA construct cloning
The LentiGuide-Puro vector were linearized using restriction enzyme BsmBI at 55�C for 3 hours. For each individual gRNA, two ol-

igonucleotides containing the spacer sequences were synthesized as listed in Table S1. The two oligos were annealed and extended

to make a double stranded DNA fragment using Kapa Hifi polymerase. The fragment was purified and subjected to Gibson assembly

(New England Biolabs) with the linearized LentiGuide-Puro vector.

Competitive cell growth assay
We developed a competitive cell growth assay to assess the effect of gene perturbations by mixing control tdTomato+ cells with

tdTomato- cells expressing a gRNA of interest (Figure 3A) and sampling relative growth rates through time by flow cytometry.

Cas9-expressing cells were transduced with EF1A- tdTomato-T2A-puromycin lentivirus and cultured under puromycin selection

for stable expression of tdTomato. To measure the negative impact of a gRNA introduced gene perturbation on the cellular prolifer-

ation rate, the Cas9-expressing cells were cultured in 12-well-plate and transduced with gRNA lentivirus at a high MOI (> 5). The day

after transduction, the Cas9-expressing cells were resuspended, counted, mixed with tdTomato+ Cas9-expressing cells, and

re-seed into 12-well-plate. The cells were sampled every 3 or 4 days to score the tdTomato+/tdTomato- ratio by longitudinal flow

cytometric analysis. By assuming the exponential growth of the cells, from time t1 to t2, the growth of cells (tdTomato+ or gRNA ex-

pressing) in the mixture population fits to the equation:

Ncðt2Þ=Ncðt1Þ32ðf0 +DfcÞðt2�t1Þ;

where Nc is the cell number of the certain cell subtype, f0 is the absolute fitness of reference cells which in this case is the tdTomato+

cells, and Dfc is fitness measurements of the certain cell subtype. For a certain gRNA (or a pair of gRNA), the DfgRNA is able to be

calculated easily according to the equation without measuring the absolutely fitness of reference cells f0:

NgRNAðt2Þ
N0ðt2Þ =

Ncðt1Þ3 2ðf0 +DfgRNAÞðt2�t1Þ

N0ðt1Þ3 2ðf0Þðt2�t1Þ :
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Although the percentage of tdTomato+ cells in the mixtures with the cells expressing non-targeting control gRNAs was stable over

time, we normalize the fitness of gRNA of interest to non-targeting control gRNAs for side by side comparisons. The cell viability of a

gRNA of interest (non-log transformed fitness) relative to non-targeting controls showed in Figure 3 is as follows:

FgRNA =
2ðDfgRNAÞðt2�t1Þ

2ðDfNTCÞðt2�t1Þ 3 100%:

The expected cell viability of a pair of gRNAs calculated according to:

FgRNA1; gRNA2 = FgRNA1 3FgRNA2:

In addition, f0 is able to bemeasured by counting of the absolute cell number over time base on the Equation (1). Then the effects of

a gene perturbation (e.g., PGD) relative to non-targeting controls (NTC) in a certain cell subtype (e.g., KEAP1 mutations) are calcu-

lable as follows:

RPGD;keap =
ðf0 +DfPGD; KEAP1Þ � ðf0 +DfNTC;KEAP1Þ

f0 +DfNTC;KEAP1
:

RNA sequencing data analysis
RNA sequencing data were obtained from the ENCODE project (GEO: GSE30567, sample GSM765402 and GSM758564 for HeLa

and A549 cell lines respectively). The results were expressed as the average value of reads per kilobase of transcript per million map-

ped reads (RPKM) across two biological replicates. The average RPKM values were log2 transformed for Pearson correlation

analysis.

Stable isotope tracing
For isotopic labeling experiments, cells were cultured in glucose- and glutamine-free media (GIBCO) supplemented with 10% dia-

lyzed FBS, 100 U/mL penicillin/streptomycin, 4mM glutamine (Sigma), and 20 mM of either [3-2H]glucose (98%, Cambridge Isotope

Laboratories), [U-13C6]glucose (99%, Cambridge Isotope Laboratories), or [1,2-13C]glucose (99%, Cambridge Isotope Laboratories).

Cells were rinsed with PBS before addition of tracing media. For glycolytic measurements, basal media was changed 1hr before

addition of tracer media and extracted at indicated time intervals. For measurement of shunting through oxPPP, cells were traced for

4hrs. For estimation of PGD contribution to cytosolic NADPH, cells were traced for 48hrs.

Metabolite Extraction and GC-MS Analysis
Cells were rinsed with 0.9% (w/v) saline and 250 mL of �80�C MeOH was added to quench metabolic reactions. 100 mL of ice-cold

water supplemented with 10 mg/mL norvaline was then added to each well and cells were collected by scraping. The lysate was

moved to a fresh 1.5 mL eppendorf tube and 250 mL of �20�C chloroform supplemented with 4 mg/mL D31 palmitate was added.

After vortexing and centrifugation, the top aqueous layer and bottom organic layer were collected and dried under airflow.

Derivatization of aqueous metabolites was performed using the Gerstel MultiPurpose Sampler (MPS 2XL). Methoxime-tBDMS de-

rivatives were formed by addition of 15 mL 2% (w/v) methoxylamine hydrochloride (MP Biomedicals) in pyridine and incubated at

45�C for 60 minutes. Samples were then silylated by addition of 15 mL of N-tert-butyldimethylsily-N-methyltrifluoroacetamide

(MTBSTFA) with 1% tert-butyldimethylchlorosilane (tBDMS) (Regis Technologies) and incubated at 45�C for 30 minutes. Aqueous

metabolites were analyzed by GC-MS using a DB-35MS column (30 m x 0.25mm i.d. x 0.25 mm, Agilent J&W Scientific, Santa Clara,

CA) in an Agilent 7890B gas chromatograph (GC) interfaced with a 5977C mass spectrometer (MS). Electron impact ionization was

performed with the MS scanning over the range of 100-650 m/z for polar metabolites. For separation of aqueous metabolites the GC

ovenwas held at 100�C for 1min after injection, increased to 255�C at 3.5�C/min, and finally increased to 320�C at 15�C/min and held

for 3 min.

Dried organic fraction was saponified and esterified to form fatty acid methyl esters (FAMEs) by addition of 500 mL of 2% (w/v)

H2SO4 inMeOH and incubated at 50�C for 120minutes. FAMEswere then extracted by addition of saturated NaCl and hexane before

collection and drying of the inorganic layer. Derivatized fatty acids were analyzed by GC-MS using a select FAME column (100 m x

0.25mm i.d. x 0.25 mm; Agilent J&W Scientific) as above, with the MS scanning over the range 120-400 m/z. For separation the GC

oven was held at 80�C for 1 min after injection, increased to 160�C at 20�C/min, increased to 198�C at 1�C/min, and finally increased

to 250�C at 5�C/min and held for 15 min.

Metabolite integration and isotopomer spectral analysis (ISA)
Mass isotopomer distributions and total abundances were determined by integration of mass fragments (Table S1) and correcting for

natural abundances usingMATLAB-based algorithm. Glycolytic fluxwas estimated by normalizing pyruvate, lactate, or alanine abun-

dance by the sum of intracellular branched-chain amino acids abundance andM+3 label. Oxidative PPP shunting was estimated by

M+1/M+1 +M+2 labeling on pyruvate from [1,2-13C]glucose (Lee et al., 1998). Isotopomer spectral analysis (ISA) was performed to

estimate contribution of oxPPP to cytosolic NADPH as previously described (Lewis et al., 2014). ISA compares experimental labeling
Molecular Cell 69, 699–708.e1–e6, February 15, 2018 e5



of fatty acids to simulated labeling using a reaction network where C16:0 is condensation of 14 NADPHs. Parameters for contribution

of PGD to lipogenic NADPH (D value) and percentage of newly synthesized fatty acid (g(t) value) and their 95% confidence intervals

are then calculated using best-fit model from INCA MFA software (Young, 2014).

Immunoblotting
Cultured cells were washed with cold PBS and harvested on ice with mPER (Pierce Biotechnology) with freshly added 1x HALT inhib-

itor (Thermo Fisher Scientific). Protein concentration was determined by BCA assay and equal amounts of protein were resolved on

SDS-PAGE gel and transferred to nitrocellulose membrane. Membrane was blocked with 5%milk in TBST (Tris-buffered saline with

0.1% Tween 20) for 2-3hrs and incubated overnight at 4�C with primary antibody: anti-Vinculin (Abcam), anti-G6PD (Cell Signaling

Technologies), anti-PGD (SantaCruzBiotechnology), anti-KEAP1 (Proteintech), anti-HA (Abcam), or anti-Nrf2 (Cell Signaling Technol-

ogy). Blotswere then incubatedwith secondary antibody for 1hr at room temp,Anti-RabbitHRP-conjugate (Cell SignalingTechnology)

or Anti-Mouse HRP-conjugate (Cell Signaling Technology). Finally blots were incubated with ECL substrate (BioRad) and imaged.

RT-PCR
Total mRNA was isolated from cells using RNA isolation kit (RNeasy Mini Kit; QIAGEN). Isolated RNA was reverse transcribed using

cDNA synthesis kit (High-capacity cDNA Reverse Transcription Kit; Thermo Fisher Scientific). Real-time PCR was performed using

SYBR green reagent (iTaq Universeal SYBR Green Supermix; Bio-Rad). Relative expression was determined using Livak (DDCT)

method with RPL27 and RPLP0 as housekeeping gene. Primers used were taken from Primerbank (Wang et al., 2012) and tabulated

in Table S1. All commercial kits were used per the manufacturer’s protocol.

Glutathione measurement
Intracellular glutathionewasmeasure usingGlutathione Assay Kit (Sigma) permanufacturer’s protocol. Ten centimeter dishes of cells

were assayed in quintuplicate and cells were counted in parallel for normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless indicated, all results shown as mean ± SEM of biological triplicates. P values were calculated using a Student’s two-tailed

t test; *, P value between 0.01 and 0.05; **, P value between 0.001 and 0.01; ***, P value less than 0.001.

DATA AND SOFTWARE AVAILABILITY

Analysis was performed with a previously reported software pipeline constructed from Python, R and Jupyter Notebooks (https://

github.com/ucsd-ccbb/mali-dual-crispr-pipeline; Shen et al., 2017). Information of paired guide RNA designs and raw read counts

of screens: Table S1. Single gene fitness: Table S2. Genetic interactions (pi) scores: Table S3. Top hits of genetic interactions:

Table S4. Original imaging data have been deposited to Mendeley Data and are available at https://doi.org/10.17632/dnkdmryc9v.

1. The accession numbers for the A549RNA-seq data andHeLaRNA-seq data areGEO:GSM758564 andGSM765402, respectively.
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Figure S1.
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Figure S1. Schematic of dual-gRNA-library construction and quality control of screens; 
related to Figure 1. (A) Oligonucleotides bearing two sgRNA spacers were synthesized, 
amplified, and cloned into a lentiviral gRNA cloning vector. Next, a fragment containing a sgRNA 
scaffold and the mouse U6 promoter was inserted between the two spacers to yield the final dual-
gRNA expression construct. A pair of primer matching sites labeled in blue were designed for 
enrichment of the two spacer regions prior to deep sequencing analysis. (B) Frequency 
distribution of the metabolism dual-gRNA plasmid library. (C) Principle component analysis (PCA) 
of the dual-gRNA read count distributions. (D) Cumulative frequency of dual-gRNA constructs by 
deep sequencing. Shift in the curves at days 14, 21, and 28 represents the depletion of dual-
gRNA constructs. Each time point was measured in duplicates. 
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Figure S2. CRISPR screening results reveal metabolic network dependencies; related to 
Figure 2. (A) SKO fitness scores for A549 cells, plotted as fg (day-1), with a more negative score 
representing a decrease in fitness with SKO. Plotted as mean ± SD. (B) Gene pairs with significant 
genetic interaction scores (z-score < -3) are shown. Conserved interactions cross HeLa and A549 
are indicated in blue. Previously reported interactions are indicated in red. Purple indicates the 
conserved interactions which have been previously reported. 
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Figure S3. Screening results validated through metabolic flux measurements and fitness 
assays; related to Figure 3. (A, B) Metabolic validation of DKO interaction in ENO1/ENO3. DKO 
significantly lowered flux through glycolysis over control or SKOs. A, measurement of labeled 
Lactate. B, measurement of labeled Alanine. † indicates statistical significance (p<0.05) for all 
conditions as compared to DKO. (C) SKO competition assay of oxPPP genes in HeLa (left) and 
A549 (right) cells. HeLa data replicated from Figure 3L and log transformed for comparison. (D) 
Deep sequencing analysis of indels (insertions and deletions) introduced by CRISPR-Cas9 at 10 
days after transduction of G6PD or PGD gRNA constructs. (E) Deep sequencing analysis of indels 
introduced by CRISPR-Cas9 at two weeks after transduction of KEAP1 gRNA constructs in HeLa 
cells. Ordinate shows the read counts of indels at each corresponding location. Most cells were 
successfully targeted after transduction of gRNAs, while only a background level of mutagenesis 
was observed in the cells transduced with non-targeting control gRNAs. These experiments 
suggest high targeting efficiency in both the A549 and HeLa Cas9-stable cell lines. (A-C) Plotted 
as mean ± SEM. 
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Figure S4. KEAP1 mutational status alters redox metabolism and impact of oxPPP gene 
knockouts on cellular fitness; related to Figure 4. (A) Scatter plots (left) of SKO fitness and 
gene expression in HeLa versus A549. Residual plots (right) of linear regressions showing the 
outliers between HeLa and A549. oxPPP genes (G6PD and PGD) showed more essentiality in 
HeLa cells versus A549, while their mRNA expression levels are lower in HeLa cells versus 
A549. (B) Immunoblot of A549s with KEAP1 mutant panel. Superfluous lane (negative control) 
removed from image. (C) Measurement of relative PGD perturbation effect in A549 cells across 
KEAP1 mutant panel. Growth curve of the reference cells, which is tdtomato+ cells in this case, 
and its absolute fitness (!") was extracted by counting average cell numbers in three 
independent experiments for three days. The fitness of PGD perturbation (#!$%&,()*$+) relative 
to non-targeting controls (NTC) in KEAP1 mutation cells were measured by competitive assay. 
Finally, by incorporating also the absolute fitness of reference cells, the relative effects of PGD 
perturbation (,$%&,()*$+) in KEAP1 mutant cells was calculated. 	
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