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Hot Spots for Modulating Toxicity Identified
by Genomic Phenotyping and Localization Mapping

number of redundant activities exist in the cell (Tong et
al., 2004), and the illustration of connectivity between
cellular organelles (Huh et al., 2003).
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can cause mutations and cell death and can promoteMassachusetts Institute of Technology
77 Massachusetts Avenue transformations to diseased states. Fortunately, cells

have a battery of DNA repair pathways that contributeCambridge, Massachusetts 02139
2 Department of Bioengineering to recovery after exposure (Friedberg et al., 1995). S.

cerevisiae has �150 known DNA repair proteins thatUniversity of California, San Diego
9500 Gilman Drive handle damage produced by a wide range of DNA-dam-

aging agents (Friedberg et al., 1995); these and otherLa Jolla, California 92093
proteins that regulate DNA repair and activate cell cycle
checkpoints play an important role in promoting viable
recovery after damage (Elledge, 1996; Jelinsky et al.,Summary
2000; Marenstein et al., 2001; Navas et al., 1996; Zhou
and Elledge, 1993). However, recent studies have begunDNA repair and checkpoint pathways protect against
to show that a wide range of other cellular activities (e.g.,carcinogen-induced toxicity. Here, we describe addi-
lipid, protein, and RNA metabolic processes) (Begley ettional, equally protective pathways discovered by in-
al., 2002; Bennett et al., 2001; Ross-Macdonald et al.,terrogating 4,733 yeast proteins for their ability to di-
1999) can also alleviate the toxic effects of DNA-damag-minish toxicity induced by four known carcinogens. A
ing agents, making it clear that our current models ofcomputational mapping strategy for global phenotypic
how DNA-damaging agents induce cytotoxicity are in-data was developed to build a systems toxicology
adequate.model detailing recovery from carcinogen exposure

To help address this inadequacy, we have completedand identifying protein complexes that modulate toxic-
a genome-wide screen to assess the role of all nones-ity. Global phenotypic data were merged with global
sential S. cerevisiae proteins in modulating toxicity aftersubcellular localization and protein interactome data
exposure to four different DNA-damaging agents, eachto generate an integrated picture of cellular recovery
of which is a known carcinogen. Such genome-wideafter carcinogen exposure. Statistically validated re-
phenotypic screens are termed “genomic phenotyping”sults from this systems-wide integration demonstrate
(Begley et al., 2002) and have been used to identifythat, in addition to the nucleus, subnetworks of toxic-
“toxicity-modulating” proteins, which may include pro-ity-modulating proteins were overrepresented in the
teins that prevent or repair cellular damage and proteinsvacuolar membrane, endosome, endoplasmic reticu-
that generally affect growth advantage under stressfullum, and mitochondrion. In addition, we show that
environmental conditions. Further, we have developedmany proteins associated with RNA polymerase II,
data-mapping techniques to globally integrate pheno-macromolecular trafficking, and vacuole function can
typic information and develop a picture of the cell afternow be counted among the many proteins that modu-
carcinogen exposure. The systems toxicology methodlate carcinogen-induced toxicity.
described below demonstrates that phenotypic data
can be globally integrated with other information andIntroduction
used to help identify pathways that modulate toxicity.

Genomic analyses of Saccharomyces cerevisiae have
Results and Discussionincluded transcriptional profiling (Hughes et al., 2000), two

hybrid screens (Ito et al., 2001; Uetz et al., 2000), tran-
We individually exposed 4,733 haploid S. cerevisiaescription factor binding analysis (Lee et al., 2002; Ren et
gene deletion strains (the entire set of nonessentialal., 2000), synthetic genetic analysis (Tong et al., 2001),
genes for this organism) to 4 DNA-damaging agents:subcellular localization (Huh et al., 2003), and pheno-
the simple alkylating agent methyl methanesulfonatetypic studies (Bennett et al., 2001; Chang et al., 2002;
(MMS), the bulky alkylating agent 4-nitroquinoline-N-Ross-Macdonald et al., 1999; Winzeler et al., 1999). Each
oxide (4NQO), the oxidizing agent tert-butyl hydroperox-approach has yielded catalogs of genes and proteins
ide (t-BuOOH), and 254 nm UV radiation. These agentswith defined characteristics and required computational
represent a cross-section of the damaging agents thatmethods to provide biological insights, such as the iden-
we are exposed to from environmental sources. Cellstification of promoter-specific transcriptional modules
were exposed, in triplicate, to five doses of each agent,for coregulated genes (Jelinsky et al., 2000; Lee et al.,
and the ability to recover (relative to similarly exposed2002; Ren et al., 2000), the demonstration that a large
wild-type) was monitored by digital imaging and compu-
tational analysis (Begley et al., 2002). The genomic phe-
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in S. cerevisiae. It should be noted, though, that genomic
phenotyping with single gene deletions could fail to
identify a toxicity-modulating protein whose activity can
be replaced by that of another protein (i.e., proteins with
redundant function).

A total of 3,420 agar plates were spotted with �96
different strains, and the strains were exposed to in-
creasing concentrations of damaging agent. Every plate
was spotted with three wild-type replicates and three
known sensitive strains (mag1�, rad14�, and erg6�) in
addition to the �90 gene deletion strains to be tested;
plates were imaged after 60 hr at 30�C (Figure 1A). The
pixel intensity for each strain was quantified, and a sim-
ple metric identified strains that were more damage sen-
sitive than wild-type on the same plate (Begley et al.,
2002). The computed phenotypic classifications for
each gene deletion strain were verified by visual inspec-
tion of the imaged plates. To facilitate visual analysis,
plate images were cut into 96 pieces in silico and recom-
piled into virtual killing curves (as in Figure 1B) on 4,733
strain-specific web pages at genomicphenotyping.
mit.edu/newpages/complete.html.

Analysis of our results indicates that 2,042 gene dele-
tion strains recovered less well than wild-type following
exposure to at least 1 of the 4 damaging agents used
(Figure 2). Based on the number of sensitive strains, it
is clear that MMS recovery was affected by the largest
number of proteins (1,441), followed by 4NQO (819),
t-BuOOH (447), and UV (288). Many strains are sensitive
to more that one agent, but, interestingly, relatively few
(27) are sensitive to all 4 agents; the overlap in agent
sensitivity among the strains is shown in Figure 2A, and
the identity of the genes is shown in Supplemental Table
S1 (see the Supplemental Data). Remarkably, there are
no DNA repair proteins among the 27 proteins that pro-
tect against all 4 agents; there are only 2 cell cycle
checkpoint proteins, and the remaining proteins play
roles in unknown pathways or in pathways not tradition-
ally considered to be involved in the response of cells
to DNA-damaging agents. Many of these pathways will
be discussed below.

Note that by using a range of exposure doses in our
genomic phenotyping screen, we identified strains with
high, medium, and low sensitivity (Figures 1B and 2A).

Figure 1. Genomic Phenotyping with a Set of Yeast Gene Dele- This may be why our screen turns out to be much more
tion Strains sensitive than others (Chang et al., 2002; Ross-Macdonald
(A) Imaged plates, damaging agents used, and study design. Five et al., 1999). Importantly, previously known damage-
imaged plates that show the growth of different strains after no, sensitive strains (e.g., DNA repair and checkpoint mu-
MMS, t-BuOOH, 4NQO, or UV treatment are shown. Initially, 96-well

tants) are found with high, medium, or low damage sen-plates were supplemented at 3 empty positions with the BY4741
sitivity, discounting the notion that only highly sensitiveparental strain (white circles) and at 3 positions with damage-sensi-
strains are of interest. In addition, we included in thetive controls, mag1� (red circles), rad14 (yellow circles), and erg6

(blue circles). After growth to stationary phase, 1 �l of each culture current screen a repeat analysis of the 1,615 strains that
was robotically spotted onto agar plates and mock or agent treated; were previously assessed for damage sensitivity (Begley
60 hr later, growth on the plates was imaged. Experiments were et al., 2002); this analysis allowed us to determine that
performed at 5 doses per agent and in triplicate for 4,733 yeast there is excellent reproducibility for the screen at �90%gene deletion strains.

(for details, see the Experimental Procedures). Our re-(B) Selected examples of strain-specific results after exposure to
sults also showed good overlap with other studies (Ben-five increasing doses of MMS. Relative to BY4741 wild-type, some
nett et al., 2001; Chang et al., 2002; Ross-MacdonaldDNA repair (mag1�, mgt1�, and hdf2�) and cell cycle (ddc1�, hsl1�,

and sis2�) mutants were classified as having either a high, medium, et al., 1999); although, they found fewer sensitive strains,
or low sensitivity to MMS. �85% of the ones they did find were represented in

our screen.
We have used data-mapping techniques coupled with

over a wide range of doses and with multiple biological statistical analysis to build a cell-based model detailing
replicates (Figure 1). We thus set out to identify any and toxicity-modulating mechanisms after exposure to car-

cinogenic DNA-damaging agents. For this, we used in-all proteins that modulate carcinogen-induced toxicity
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Figure 2. Clustering and Classifications for Toxicity-Modulating Proteins

(A) Phenotypic values for all agent-sensitive or -resistant strains (detailed on website) were assigned based on sensitivity (green), resistance
(red), and no phenotype (black); average linked clustering was performed as described (Eisen et al., 1998). The y axis corresponds to individual
gene deletion strains, and the x axis indicates treatment.
(B) Cellular process associated with agent-sensitive phenotypes. Categories are based on the Saccharomyces cerevesiae genome database
(SGD) and yeast protein database (YPD). In addition, the number of gene deletion strains falling into high, medium, and low categories of
sensitivity is shown. On the website, each number is linked to the relevant strain list, ordered from the strongest to the weakest phenotype,
and each strain on the list links to the webpage displaying its triplicate screening results.

formation from a study that assigned subcellular local- lected sets of proteins approximated a normal distribution
(Supplemental Figure S1; see the Supplemental Data).izations to about 70% of the yeast proteome (Huh et al.,

2003). This global localization study used GFP-tagged The determination of whether the observed number of
toxicity-modulating proteins in each subcellular local-proteins and colocalization methods to assign 1 or more

of 22 possible subcellular localizations to each of 4,156 ization was significantly higher than the mean number
of such proteins found by random sampling was basedproteins. It should be noted that both essential and

nonessential proteins are among this group of 4,156, on the Z-score and a one-tailed hypothesis test to spec-
ify a p-value. Toxicity-modulating proteins that were sig-while our phenotypic data only apply to the nonessential

proteins. We integrated the phenotypic data with sub- nificantly overrepresented (p � 0.05) in a subcellular
localization were then mapped en mass, generating cell-cellular localization information to determine the distri-

bution of toxicity-modulating proteins among the 22 lo- based images for hot spots of activity after toxicant
exposure (Figure 3). For mapping, we set the p-valuecalizations and identify overpopulated areas. Since the

overall fraction of toxicity-modulating proteins is quite cutoff at 0.05, but it should be noted that only one over-
populated localization (nuclear periphery, 4NQO) was athigh, it was important to determine whether an overpop-

ulation of such proteins to a subcellular localization was the cutoff, and the rest were between 6.9E-14 and 0.045.
In addition, Figures 3B–3F have been color coded (yel-significantly higher than that expected by chance. For

each subcellular localization containing N nonessential low) to show all the localizations that have p-values
between 1.0E-4 and 0.05. To additionally corroborateproteins, we performed �2000 random samplings of N

proteins from the complete set of nonessential proteins significant results, the binomial distribution probability
of all overpopulated localizations was determined (seeto determine the average number of MMS, t-BuOOH,

4NQO, and UV toxicity-modulating proteins that would the Experimental Procedures) (Devore, 2004).
This localization mapping strategy was first validatedappear in each subcellular localization simply by chance.

The toxicity-modulating proteins among the randomly col- by using information about essential proteins (Figures
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Figure 3. Hot Spots for Essential and Toxicity-Modulating Proteins

(A) A histogram shows the number of times X essential proteins were identified after randomly sampling �2000 groups of 164 proteins and
indicates that nucleolus-localized proteins are overrepresented with essential proteins. A total of 105 proteins (the position in the histogram
is shown with a red arrow) found in the nucleolus are essential, which is significantly increased (p � 6.9E-14) when compared to a random
sampling of yeast proteins.
(B–F) Localizations colored in orange (p � 1.0 E-4) or yellow (p � 0.05) and labeled in red are overpopulated with essential or toxicity-
modulating proteins and classified as hot spots. (B) Hot spots for essential proteins include the nucleolus, nucleus (458 proteins, p � 6.9E-
14), spindle pole (39 proteins, p � 1.0E-11), ER to Golgi (5 proteins, p � 1.3E-03), and nuclear periphery (22 proteins, p � 8.2E-3). (C) Hot
spots for MMS toxicity-modulating proteins include the nucleus (431 proteins, p � 1.1E-08), vacuolar membrane (30 proteins, p � 4.7E-03),
microtubule (9 proteins, p � 3.6E-02), and the endosome (24 proteins, p � 4.5E-02). (D) Hot spots for t-BuOOH toxicity-modulating proteins
include the endosome (17 proteins, p � 6.0E-09), ER (42 proteins, p � 5.4E-06), actin (6 proteins, p � 3.6E-02), and vacuolar membrane (10
proteins, p � 3.6E-03). (E) Hot spots for 4NQO toxicity-modulating proteins include the nucleus (256 proteins, p � 4.8E-05), microtubule (7
proteins, p � 1.0E-02), nucleolus (20 proteins, p � 1.4E-02), and nuclear periphery (13 proteins, p � 5.0E-02). (F) Hot spots for UV toxicity-
modulating proteins include the nucleus (106 proteins, p � 7.9E-07), mitochondrion (49 proteins, p � 1.4E-02), microtubule (3 proteins, p �

2.9E-02), nuclear periphery (6 proteins, p � 2.8E-02), and the nucleolus (8 proteins, p � 3.6E-02).

3A and 3B). Essential genes/proteins were identified by nucleolus (p � 6.9E–14) and also find that they are over-
represented in the nucleus, nuclear periphery, spindlethe S. cerevisiae gene deletion consortium (Giaever et

al., 2002), and it was established that roughly 20% of pole, and “endoplasmic reticulum (ER) to Golgi,” with
p-values ranging from p � 0.008 to p � 6.9E–14 (Supple-S. cerevisiae genes are essential. Huh et al. briefly noted

that essential proteins are overrepresented in the nucle- mental Table S2). Such localization of essential proteins
was, for the most part, expected since all genetic trans-olus (Huh et al., 2003). Here, we confirm that essential

proteins are indeed significantly overrepresented in the actions take place in the nucleus and nucleolus and
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because the spindle pole helps accurately segregate Xenarios et al., 2002) (with both protein-protein and pro-
tein-DNA interactions) for all of the proteins located inchromosomes. The nuclear periphery is home to the

nuclear pore complex that orchestrates the import and subcellular localizations that emerged as hot spots for
toxicity modulation (Figures 3C–3F); i.e., the actin, endo-export of proteins and RNA to and from the nucleus,

clearly important events for cell function. Surprisingly, some, ER, microtubule, mitochondria, nuclear periph-
ery, nucleolus, nucleus, and vacuolar membrane do-the “ER to Golgi” localization contains a higher than

expected number of essential proteins, including pro- mains. The use of only molecular interaction between
similarly localized proteins has the added benefit of re-teins required for functioning of the CopII complex (Do-

linski et al., 2004), which orchestrates vesicle budding ducing noise inherent to protein interaction data sets.
The localization-specific molecular interaction informa-and the proper transport of cargo molecules to the Golgi

(Haucke, 2003). Knowing the identity of cargo molecules tion was merged with phenotypic data, generating phe-
notypically annotated localization-specific protein net-would surely shed light on the essential “ER to Golgi”

function. It is important to note that essential proteins works.
An example of localization mapping followed by pro-reside in at least 20 of the 22 subcellular localizations

and that hot spots simply highlight localizations that tein subnetwork analysis for the nucleus is shown in
Figure 4A (Supplemental Figures S2–S5). The nucleushave a higher density of essential proteins than would

be expected by chance. The same is true for the hot was identified as a hot spot based on localization map-
ping. The 1,454 nuclear proteins were assembled intospots for toxicity-modulating proteins described below.

Localization mapping of the toxicity-modulating pro- a network of 1,248 proteins connected by 2,918 protein-
protein interactions and 1,079 protein-DNA interactions.teins identified by genomic phenotyping was used to

help build an image of the important cellular responses Next, all essential and no-phenotype proteins were re-
moved from the subnetworks found in the nucleus, viathat alleviate toxicity induced by carcinogenic DNA-

damaging agents; such mapping identified expected a filtering step, and we derived a large, connected sub-
network of 252 proteins, all of which confer resistanceand unexpected hot spots for toxicity modulation, and

it is immediately obvious that the hot spot locations to MMS-induced toxicity. While this was the largest sub-
network to be identified, similar subnetworks werevary according to the type of damaging agent analyzed

(Figures 3C–3F, Supplemental Tables S3–S6). DNA is a sought for each hot spot in Figures 3C–3F; filtered nu-
clear subnetworks are displayed in Figures 4A–4C, andmajor target for the four DNA-damaging agents (Fried-

berg et al., 1995). Accordingly, the nucleus was overpop- all phenotypically annotated localization-specific pro-
tein networks are found in Supplemental Figures S2–S5,ulated with MMS, 4NQO, and UV toxicity-modulating

proteins, as one might expect for DNA repair and DNA with annotated proteins.
Nuclear subnetworks for MMS, 4NQO, and UV (Fig-damage-sensing proteins. However, it was not a hot

spot for t-BuOOH toxicity-modulating proteins. This is ures 4A–4C) were comprised, respectively, of 272, 147,
and 41 proteins connected to at least 1 other toxicity-not to say that no nuclear proteins provide t-BuOOH

resistance, but rather that the nucleus is not a hot spot modulating protein. Many of the proteins in these sub-
networks are actually involved in damage recovery atfor such proteins. Since there is ample evidence that

t-BuOOH can induce DNA damage (Mukherjee et al., the DNA level. For each agent, 1 large, connected sub-
network emerged containing 252 proteins for MMS re-1995; Ochi, 1989), these results suggest either that DNA

damage induced by this oxidizing agent is not cytotoxic, covery, 131 for 4NQO recovery, and 22 for UV –recovery,
all with p � 1.0E-5. The nucleus contains DNA repairor that redundant DNA repair activities exist. Indeed, it

is clear from E. coli, humans, and mice that multiple pathways to process damage, and so it was no surprise
to find such proteins represented in all 3 toxicity-modu-redundant pathways exist for protecting against DNA

oxidation (Michaels et al., 1992; Mo et al., 1992; Rosen- lating nuclear subnetworks; 27 were found for MMS, 26
were found for NQO, and 11 were found for UV. However,quist et al., 1997; Slupska et al., 1996).

Toxicity-modulating hot spots were also identified in it was surprising to find roughly the same number of
proteins involved in transcription embedded in theseother localizations. Microtubule-associated proteins

were overpopulated with MMS, 4NQO, and UV toxicity- subnetworks; 27 were found for MMS, 26 were found
for 4NQO, and 9 were found for UV. None of these tran-modulating proteins, presumably because of their role in

mitosis (Dolinski et al., 2004). The nucleolus and nuclear scription proteins are known to participate in transcrip-
tion-coupled DNA repair; i.e., they are not part of theperiphery were overpopulated by 4NQO and UV toxicity-

modulating proteins, suggesting that nucleocytoplas- TFIIH RNA Polymerase II initiation complex (Friedberg
et al., 1995). Instead, these toxicity-modulating proteinsmic transport of RNA and proteins, plus the biogenesis

of new ribosomes, is relatively important for toxicity comprise components of the RNA polymerase II media-
tor complex and the Swi/Snf global transcription activa-modulation. Finally, localization mapping analysis of

toxicity-modulating proteins also classified the vacuolar tor complex; plus, several others are also associated
with RNA polymerase II-associated proteins. It shouldmembrane (for MMS and t-BuOOH), the endosome (MMS

and t-BuOOH), actin (t-BuOOH), the ER (t-BuOOH), and be noted that many of the strains missing RNA polymer-
ase II-associated proteins had high sensitivity to specificmitochondria (UV) as being hot spots (Figures 3C–3F).

To better understand what happens at hot spots for agents (see Figure 1B), and some were sensitive to all
four DNA-damaging agents (Snf6 and Rpb4). We havetoxicity modulation, we performed another layer of data

integration to identify interacting proteins involved in thus uncovered hitherto unknown transcription-related
pathways that play an enormous role in helping cellspreventing cell death after treatment with a carcinogen.

Such interacting proteins were assembled from publicly recover from the damage inflicted by a variety of carcin-
ogenic agents.available molecular interaction data (Lee et al., 2002;
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Figure 4. Localization-Based Protein Subnetworks that Modulate Toxicity

(A) Subcellular localizations that were overpopulated with toxicity-modulating proteins were identified (top), molecular interactions connecting
proteins belonging to this localization were compiled (middle), and the resulting protein subnetwork (bottom) was filtered to identify connected
groups of toxicity-modulating proteins. Visualization was performed by using the program Cytoscape (Shannon et al., 2003) (www.cytoscape.
org). The example shown represents the analysis of MMS toxicity-modulating proteins (green circles) found in the nucleus (p � 2.6E-12).
Protein-protein interactions are represented as blue lines, and protein-DNA interactions are represented as red arrows.
(B–D) Nuclear subnetworks of (B) 4NQO toxicity-modulating (p � 1.3E-5) and (C) UV toxicity-modulating proteins (p � 9.9E-8) were also
identified. Significantly enriched subnetworks found in the vacuolar membrane representing (D) MMS toxicity-modulating (p � 0.02, p � 0.02,
and p � 0.05 for the 10, 4, and 3 protein subnetworks, respectively) and (E) t-BuOOH toxicity-modulating proteins (p � 0.002 and p � 0.05
for the 10 and 3 protein subnetworks, respectively). All protein names can be found in the Supplemental Figures. Green circles represent
toxicity-modulating proteins, gray circles represent essential proteins, and red circles represent proteins whose corresponding gene deletion
strains display no phenotype. Blue lines represent protein-protein interactions, and red arrows represent protein-DNA interactions.

In the nuclear protein subnetworks for MMS, 4NQO, one another (Supplemental Figures S2A–S5A), and each
one contributes to toxicity modulation. Juxtaposition ofand UV (Figures 4A–4C), proteins for DNA repair, cell

cycle checkpoints (Friedberg et al., 1995), and transcrip- such proteins is even seen for the smallest subnetwork,
representing UV toxicity-modulating proteins (Figure 4Ction (Dolinski et al., 2004) (among others) are linked to
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and Supplemental Figure S5A), where the cell cycle- treatment with carcinogens, and we propose that the
specific Swi6 transcription factor interacts with the DNA vacuole is more important in the response of cells to
damage-inducible Dun1 kinase, which in turn interacts carcinogenic agents than previously realized.
with DNA repair and cell cycle checkpoint proteins We have used genomic phenotyping in combination
(Rad9, Rad24, and Rad1). Thus, DNA repair pathways with mapping techniques to identify localization hot
are linked to the signal transduction apparatus, sug- spots and protein subnetworks that modulate agent tox-
gesting that integrated response modules allow the pro- icity. We have, for the most part, interpreted these re-
cessing of DNA damage to signal to the rest of the cell sults to suggest that cellular responses represented in
via kinase cascades and altered transcription. Indeed, hot spots and subnetworks play an important role in
proteins involved in remodeling chromatin structure are either preventing or repairing cellular damage induced
abundant among the nuclear toxicity-modulating sub- by the applied agents. Another plausible interpretation
networks, with 16 such proteins for MMS, 10 for 4NQO, is that some of the identified proteins are playing a more
and 3 for UV (Figures 4A–4C and Supplemental Figures indirect role, by optimizing cell growth under conditions
S2A and S4A–S5A). The chromatin assembly proteins, of stress. It could be argued that most genes have a
histone acetyltransferases, and deacetylases repre- role in optimizing cell growth based on the principals of
sented here may participate in reprogramming gene ex- evolutionary selection. The growth defect observed in
pression in response to damage exposure. some of the damage-sensitive strains could certainly be

We also explored the non-nuclear protein complexes attributed to fitness deficiencies under stressful condi-
that modulate toxicity. For the vacuolar membrane, we tions, as opposed to damage recovery. We suggest that
see connections between 19 of the 60 proteins localized fitness deficiencies are likely to be more prevalent
to this compartment, via 31 protein-protein interactions among gene deletion strains that are sensitive to multi-
(Supplemental Figures S2B and S3A). We thus identified ple agents.
significant (p � 0.02) connected groups of MMS and In conclusion, we have developed a localization map-
t-BuOOH toxicity-modulating proteins that comprise ping method that uses three diverse global data sets,
part of a vacuolar H�-ATPase (Vma2, Vma4, Vma5, namely, genomic phenotyping to identify toxicity-modu-
Vma6, Vma7, Vma8, and Vph1) (Dolinski et al., 2004; lating proteins, subcellular localization of proteins, and
Forgac, 1999), that comprise part of a complex that molecular interaction data to generate global models of
plays a role in the Ran/Gsp1p GTPase cycle (Gtr1 and cellular responses to carcinogenic agents. The inte-
Gtr2; p � 0.02), and that comprise a group of proteins grated data identified statistically validated toxicity-
involved in vacuolar protein sorting (Vps33, Vps41, and modulating hot spots in the cell and identified a number
Vps16; p � 0.05) (Figures 4D and 4E; Supplemental Fig- of interacting protein subnetworks residing in these hot
ures S2 and S3) (Dolinski et al., 2004); each protein is spot locations. The reported analysis used subcellular
important for vacuolar function. The H�-ATPase acidi- localization data obtained under basal conditions. How-
fies vacuoles and facilitates the transport of ions and ever, it should be noted that reshuffling of proteins may
small metabolites into the vacuole, and the acidic envi- occur upon treatment with a damaging agent, and this
ronment promotes proteolysis by vacuolar peptidases is currently under investigation. In all, though, the data
(Dolinski et al., 2004; Stevens and Forgac, 1997) as well integration method reported has highlighted a number
as the breakdown of other macromolecules to be re- of unexpected pathways that play important roles in
moved from the cell. Models for vacuole function after modulating cellular toxicity after treatment with a dam-
MMS and t-BuOOH treatment include: (i) degradation aging agent. The approach is now ripe for screening
and disposal of damaged macromolecules to avoid cel- clinically relevant pharmaceuticals and has the potential
lular dysfunction; and (ii) sequestration of damaging to provide insight into the mechanism of action for many
agents to lower the effective exposure dose. These mod- different compounds.
els are not mutually exclusive, and either one could
account for the importance of vacuolar membrane pro-

Experimental Proceduresteins in preventing carcinogen-induced cell death.
The endosome also plays a role in modulating MMS Genomic Phenotyping and Database Construction

and t-BuOOH toxicity (Figures 3C and 3D; Supplemental S. cerevisiae strain BY4741 and deletion mutant derivatives were
Figures S2 and S3). Note that identified endosomal tox- supplied by Research Genetics. Parental strain BY4741 was trans-
icity-modulating proteins (Vps35, Vps5, Pep8, Pep3, formed with plasmid pYE13g (American Type Culture Collection)

and selected for on YPD (10 g yeast extract, 20 g peptone, 20 gVps8, Vps27, and Yhl002w) are directly linked to the
dextrose, 20 g agar/liter) containing 200 �g/ml G418. Genomic phe-vacuole (Dolinski et al., 2004), and it appears that the
notyping was performed as previously described (Begley et al.,vacuole and endosome preferentially interact with each
2002), with some modifications. Briefly, 96-well master plates con-

other (Huh et al., 2003). Some of the endosome toxicity- taining individual deletion strains were supplemented with the
modulating subnetworks help to sort and deliver pro- agent-sensitive controls mag1�, rad14, and erg6 and grown in 150
teins to the vacuole (Supplemental Figures S2C and �l of YPD, containing G418 at 200 �g/ml. Settled cells in each
S3B). Identified protein subnetworks (p � 0.06) in the position of the 96-well plate were resuspended with 60 �l bursts of

forced air from a Hydra liquid handling apparatus (Robbins Scien-endosome include those defined by Pep3, Vps8, and
tific), and then using the Hydra, 1 �l samples were spotted simulta-Pep5 in addition to Vps5, Vps7, Vps35, and Pep8. Strains
neously onto an agar-containing plate. MMS, t-BuOOH, and 4NQOdeficient in Pep3, Pep8, Vps5, Vps8, or Vps35 have sort-
were purchased from Aldrich. UV radiation (254 nm) was supplied

ing defects for delivery of degredative enzymes to the from a UV Stratalinker 2400 (Stratagene). Plates containing up to
vacuole (Chen and Stevens, 1996; Dolinski et al., 2004; 96 strains were tested under the following conditions: no treatment,
Paravicini et al., 1992). Again, the inability to degrade 0.01% MMS, 0.02% MMS, 0.025% MMS, 0.03% MMS, 0.50 mM

t-BuOOH, 0.75 mM t-BuOOH, 1.0 mM t-BuOOH, 1.25 mM t-BuOOH,damaged cellular constituents decreased viability after
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0.2 �g/ml 4NQO, 0.3 �g/ml 4NQO, 04 �g/ml 4NQO, 0.5 �g/ml 4NQO, was determined to be significant and was used, as opposed to a
hypergeometric distribution, due to sample size.40 J/m2 UV, 80 J/m2 UV, 100 J/m2 UV, and 125 J/m2 UV. The maximum

dose of each agent was selected to induce 10% killing to the wild- Protein-protein and protein-DNA interactions were integrated and
visualized with our genomic phenotyping data and subcellular local-type strain. Strains were grown for 60 hr at 30�C and then imaged

with a Gel Doc 1000 from BioRad running Quantity One software. ization data by using filtering methods found in the visualization
program Cytoscape (found at www.cytoscape.org). First, the local-Images were analyzed with ScanAlyze software to quantitate the

pixel intensity of each spotted colony. All screens were performed ization-specific molecular interaction information was merged with
phenotypic data generating phenotypically annotated localization-in triplicate with fresh liquid cultures. The genomic phenotyping

database (genomicphenotyping.mit.edu) was constructed as de- specific protein networks. For visualization purposes, large net-
works found in the nucleus, and shown in Figure 4, were filtered toscribed (Begley et al., 2002). Representative sensitivity values were

generated by using a scoring scheme that allocated values of 4, 3, remove all essential and no-phenotype proteins. The significance
for toxicity modulation of a localization-specific protein subnetwork2, or 1 depending on the concentration of agent when strain sensitiv-

ity was identified; 4 is allocated to the lowest, and 1 is allocated to containing N nonessential proteins was determined based on a
random sampling of N proteins (from the total sample space of 3185the highest concentration of damaging agents. These values were

allowed to accumulate in each replicate, and then they were proteins) to determine the number of randomly selected toxicity-
modulating proteins. This was performed 2000 times to generatesummed across all replicates. For example, in replicate 1, strains

sensitive to all concentrations of agents received a score of 10 (4 � average (ATN) and standard deviation (SDN-T) values. The number
of toxicity-modulating (TN) proteins found in a localization-specific3 � 2 �1), and this was summed over all 3 replicates for a final

score of 30 (10 � 10 � 10). Damage-sensitive strains had scores protein subnetwork was then compared to the average (ADRN) for
a sample of the same size, and a Z-score and p-value were deter-that ranged from 30 (most sensitive) to 2 (least sensitive).

We have also analyzed our data in the context of a partial data mined as described above.
set performed previously in our lab containing 1615 overlapping
strains, covering 4 identical damaging agents, and containing a total Supplemental Data
of 6460 (i.e., 1615 � 4) overlapping data points. Upon analysis, we Supplemental Data including Supplemental Figures S1–S5 and Sup-
determined that out of the 6460 overlapping data points, 5,615 of plemental Tables S1–S6 are available at http://www.molecule.
the individual comparisons agreed (87%) (both sensitive or both no- org/cgi/content/full/16/1/117/DC1/.
phenotype), while 845 differed. Similarly, a comparison to data found
in the public domain (Bennett et al., 2001; Chang et al., 2002; Ross-
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