
The successful completion of the Human Genome 
Project depended crucially on the integration of genetic 
and physical maps1. Genetic maps, also known as gene 
linkage maps2, were constructed by measuring the 
meiotic recombination frequencies between different 
pairs of genetic markers. On the basis of many pair-
wise genetic distances, markers could be placed on a 
number line with short distances corresponding to low 
recombination frequencies. Conversely, physical maps 
were constructed by identifying the position of mark-
ers along the chromosome. Physical distances between 
markers were determined by techniques such as radiation  
hybrid mapping3,4, fluorescence in situ hybridization 
(FISH)5 or, ultimately, automated DNA sequencing6. 
Genome assembly involved a multi-step procedure in 
which DNA fragments were cloned, sequenced and, 
on the basis of the markers they were found to con-
tain, ordered relative to each other and to the genetic 
map7,8. Obtaining full coverage of the genome involved 
generating enough physical and genetic data so that 
the two maps could be reconciled. Following assem-
bly, the physical and genetic maps were annotated 
and continuously updated with detailed information 
about functional elements9. For the physical sequence 
map, the primary annotation task was the identifica-
tion of genes; for the genetic map, it was linking genes 
or their surrogate genetic markers with diseases of  
interest. 

Remarkably, the mapping cellular regulatory and 
signalling networks is now proceeding in much the 
same way10,11 (FIG. 1). As for genomics, large-scale 
genetic and physical interaction mapping projects 

release enormous amounts of raw data that must be 
filtered and interpreted biologically (BOX 1). Integration 
of these two types of maps is important because they 
provide views that are highly complementary with 
regard to cellular structure and function: physical 
interactions dictate the architecture of the cell in terms 
of how direct associations between molecules consti-
tute protein complexes, signal transduction pathways 
and other cellular machinery. Genetic interactions 
define functional relationships between genes, giving 
insight into how this physical architecture translates 
into phenotype. A complete picture of the cell must 
necessarily integrate both aspects. 

The complementarity between physical and genetic 
interactions has been strikingly demonstrated in yeast, 
for which less than 1% of synthetic-lethal genetic  
interactions can also be observed physically12. This 
complementarity has also been exploited numerous 
times in classical genetics and biochemistry, in which 
a great many pathways have been understood only 
through integration of both physical and genetic inter-
actions (the LIN-12–Notch signalling pathway13 and 
the actin cytoskeleton14 are excellent examples).

More recently, the advent of whole-genome tech-
nologies has expanded the task of data integration 
dramatically. Many new types of physical and genetic 
measurements have appeared (BOX 1), and the use of 
reverse-genetic screening has increased the total number 
of recorded interactions from a few hundred to a few 
hundred thousand. This growth in data has made it 
possible to consider genetic or physical interactions 
not only on an individual level, but as building blocks 
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Radiation hybrid mapping
High-resolution mapping of 
human markers using X-ray 
exposure to fragment human 
chromosomes and fusing the 
irradiated cells with rodent 
cells. The frequency of  
co-occurrence of markers on 
the same fragment relates to 
their genomic distance.

Fluorescence in situ 
hybridization
Fluorescently labelled DNA 
probes are hybridized to 
chromosomal DNA. This allows 
genes (probes) to be assigned 
to chromosomes and provides 
a rough estimate of the 
chromosomal position of  
the cloned fragment.

Integrating physical and genetic maps: 
from genomes to interaction networks
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Abstract | Physical and genetic mapping data have become as important to network 
biology as they once were to the Human Genome Project. Integrating physical and genetic 
networks currently faces several challenges: increasing the coverage of each type  
of network; establishing methods to assemble individual interaction measurements into 
contiguous pathway models; and annotating these pathways with detailed functional 
information. A particular challenge involves reconciling the wide variety of interaction 
types that are currently available. For this purpose, recent studies have sought to classify 
genetic and physical interactions along several complementary dimensions, such as 
ordered versus unordered, alleviating versus aggravating, and first versus second degree.
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Reverse-genetic screening
Identifying the mutant 
phenotype(s) associated with  
a known genetic mutation or a 
panel of known mutations, 
such as a gene-deletion library. 
This term contrasts with 
forward-genetic screening, 
which involves identifying the 
mutations that affect a given 
phenotype. 

of larger networks of gene and protein interactions. 
unlike for individual interactions, interaction networks 
cannot be integrated by eye. Rather, automated meth-
ods for data collection require automated methods  
for bioinformatic analysis. 

At present, numerous bioinformatic approaches are 
under development for physical and genetic network 

quality assessment, integration, assembly and annota-
tion — steps that were also central to completion of 
the Human Genome Project (FIG. 1). In the remainder 
of this Review, we summarize the progress that is being 
made at each of these steps, as applied to interaction 
mapping; details on obtaining the individual interac-
tion measurements are reviewed elsewhere11,15,16. The 

Figure 1 |	genetic	and	physical	mapping	for	networks	and	genomes.	a | The assembly and analysis of genetic  
and physical interaction networks runs parallel to the procedures that were previously developed for assembly and 
analysis of DNA sequences. b | An integrated map of human chromosome X. Markers are listed in the centre column, 
with genetic distances given on the left in centimorgans (cM) and physical distances given on the right in centirays 
(cR). c | An integrated map of genetic and physical interactions for the yeast cytoskeleton. Solid lines represent 
physical protein–protein interactions, and dashed lines represent synthetic-lethal genetic interactions. The physical 
network defines three complexes: prefoldin, dynactin and the kinetochore, whereas the genetic network defines 
functional dependencies between prefoldin and dynactin or the kinetochore, respectively. Part b reproduced with 
permission from the Cancer Genome Anatomy Project  (2007) National Cancer Institute (USA). Part c modified  
with permission from Nature Biotechnology REF. 37  (2005) Macmillan Publishers Ltd.
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Regression
A statistical method for 
predicting a dependent 
variable on the basis of one or 
more independent variables.

Likelihood function
A statistical method for 
predicting the likelihood of an 
outcome that is conditional 
(dependent) on other evidence.

modes by which genetic and physical interactions com-
plement one another have not been fully elucidated; 
however, a growing body of work has begun to reveal a 
complex but concrete set of principles governing their 
relationships. These studies show how interactions of 
different types can be combined to assemble a more 
comprehensive picture of biological systems. 

Interaction quality assessment
An important first step in sequencing the human genome 
was to assign quality scores to each DNA base pair  
that was identified from the fluorescent traces produced 
by automated sequencing machines17. Not surprisingly, 
data quality is also a foremost concern in physical 
and genetic interaction measurements, and must be 
addressed before any biological interpretation can  
take place.

Dealing with false positives. The first quality-control 
issue concerns false-positive measurements, and the 
method of choice for dealing with false positives is 
data integration18–25. Although all large-scale studies 
are subject to noise, the rationale for data integration 
is that observations of true interactions will reinforce 
or complement one another when combined across 
different studies and/or experimental techniques. For 
example, the independent observation of a protein– 
protein interaction by both yeast two-hybrid (Y2H) and 
tandem affinity purification coupled with mass spec-
trometry (TAP–MS) methods, or by two independent 
TAP–MS studies, renders this interaction more likely 
to be true26.

Along these lines, numerous types of evidence have 
been integrated to bolster confidence that two genes or 
proteins interact. For example, if the two genes have  
correlated expression profiles or similar patterns of 
occurrence across many genomes, these findings lend 
further support to the raw interaction measurement27,28. 
Of all of the different lines of evidence that can be 
integrated, combining physical and genetic data can 
be particularly useful, because the false negatives and 
false positives that influence these two types of interac-
tion measurement are generally different in character. 
For instance, genetic interactions mapped by synthetic 
genetic array (SGA) analysis are influenced by artefacts 
caused by gene deletion12,29, such as mis-targeted deletion 
constructs and deletions that alter the metabolism of the 
drug that is used for mutant selection. Physical interac-
tions mapped by Y2H or TAP–MS are influenced by 
artefacts that result from gene tagging, which can influ-
ence the functioning of the protein that is produced30,31.

Modern network analyses use regression or likelihood  
functions to learn which of the multiple types of evidence 
for genetic or protein interactions are most predictive 
of a known set of interactions, and to weight them 
accordingly. These methods rely heavily on a set of 
‘gold-standard’ (highly accurate) interactions that are 
used to evaluate the predictive utility of different types 
of evidence26,32. The result is a statistical measure that 
quantifies the likelihood that any given pair of biomole-
cules interact with each other (for example, two proteins 
or a protein–DNA pair)18–23. Thus, interactions are not 
described in a binary manner (whereby an interaction 
can be only either absent or present), but quantitatively20. 
Strictly, these quantitative confidence scores describe the  
probability or reproducibility of the interaction, not  
the interaction strength. Nonetheless, there is some 
evidence that stronger interactions should be more 
reproducible, leading to higher scores33.

Dealing with false negatives. False negatives constitute 
a second data quality concern in interaction mapping 
projects; that is, the potential to miss interactions, 
leading to insufficient coverage of the network. Again, 
data integration is key, as interactions that are missing 
from one study can be detected using high-confidence 
interactions from another. Note that integrating more 
information can simultaneously reduce both the false-
negative and the false-positive rates: as the number of 

 Box 1 | Technologies for measuring physical and genetic interactions.

At least two types of physical interaction are currently measurable at high 
throughput: protein–protein and protein–DNA. Networks of protein–protein 
interactions are being built using yeast two-hybrid (Y2H) technology 11,80–86 or 
tandem affinity purification coupled with mass spectrometry (TAP–MS)49,87,88. 
Similarly, networks of protein–DNA interactions leverage the techniques of 
chromatin immunoprecipitation coupled with DNA microchips (ChIP–chip)51,89,90  
or sequencing (ChIP–PET)91,92, DNA adenine methylase identification (DamID)93, or 
yeast one-hybrid assays94,95. Physical interactions can also be measured in vitro using 
DNA or protein arrays, which have been used to identify transcription factor binding 
sites96 and the substrates of yeast kinases36.

In contrast to physical interactions, genetic interactions represent functional 
relationships between genes, in which the phenotypic effect of one gene is 
modified by another29,42. Genetic interactions are identified by comparing the 
effect of mutating each gene individually to the effect of the double mutant. For 
example, ‘synthetic sickness’ (or in the extreme ‘synthetic lethality’) is a genetic 
interaction in which the measured phenotype is growth, and mutating both genes 
results in slower growth than expected from either mutation alone. In yeast, large 
networks of genetic interactions are being measured through the techniques of 
synthetic genetic arrays (SGA) and diploid-based synthetic-lethality analysis on 
microarrays (dSLAM)97. All of these methods allow the phenotypic consequences of 
double-mutant combinations to be assayed in high-throughput formats15. In worms 
and higher eukaryotes, genetic interactions are explored through the technique  
of combinatorial RNAi98 and other RNAi-based screening approaches99,100. Other 
types of genetic interactions are non-symmetrical and establish a ‘cause-and-
effect’ ordering (BOX 2). Such ordered networks are being constructed using high-
throughput growth assays41 or complex read-outs such as the ability of yeast to 
invade agar media40.

Increasingly, cause-and-effect genetic orderings are also being established 
using gene expression as the primary phenotype. In yeast, several groups52,56–59 
have gathered expression profiles for panels of gene-deletion strains, in which 
each deletion mutant (the cause) is linked to downstream genes, the expression 
levels of which are affected by the deletion (the effects). This interaction differs 
from the classical genetic orderings that are described above in that a mutation in 
only one gene is involved, not two. However, as the phenotype is directly related 
to a second gene (that is, its expression level), a causal link from mutation to 
phenotype defines an ordered interaction between two genes. Similar cause-and-
effect orderings are provided by expression quantitative trait loci (eQTL) analysis, 
which has been applied not only in yeast101 but also in higher organisms102–105. In 
eQTL analysis, large numbers of individuals are genotyped across a panel of 
polymorphic markers and simultaneously phenotyped using microarray 
expression profiling. Statistical methods are then used to determine linkages 
between markers and gene expression levels; that is, particular markers for which 
the pattern of genotypes over all individuals is correlated with the pattern of 
expression of a particular gene. 
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ways of detecting an interaction increases, the higher 
the chance that a true interaction would be detected by 
several of these methods, and the lower the chance that 
a false interaction would be.

Accounting for the dynamic nature of networks. In terms 
of coverage and accuracy, an important difference between 
genomes and interaction networks is the dynamics and 
plasticity of the latter: whereas the genome is largely 
static, interaction networks are context-dependent.  
Interactions might be active only in certain cell types, 
during particular developmental stages or under spe-
cific external conditions. This variability complicates 
the concept of coverage because, ideally, all possible 
conditions and cell types should be tested, and certain 
in vitro measurement techniques such as Y2H do not 
provide information about condition specificity. A pos-
sible solution to this problem is to develop algorithms to 
predict interactions on the basis of all the available data 
from all conditions. If those algorithms also predict the 
conditions under which the interactions are active, such 
analyses could streamline the experimental verification. 
For instance, Gunsalus et al. mapped mRNA expression 
data and early embyrogenesis RNAi phenotypic profiles 
onto a static Caenorhabditis elegans protein interac-
tion map in order to extract subnetworks that function  
at specific stages of development34. In this case, condition-
specific data aided the interpretation of a static interaction  
map and also predicted the conditions in which the 
subnetworks were most likely to be active. In terms of 
biological verification, context-independent interaction 
measurements ask the question, can they interact? by 
contrast, condition-specific and in vivo measurements 
ask the question, do they interact? This is an important 
distinction when navigating the burgeoning sea of  
available interaction data. 

Assembly I: categories of interactions
In the Human Genome Project, ‘genome assembly’ was 
the process of putting individual ~600-bp sequence 
reads together to form longer sequences called contigs. 
In the context of molecular interactions, we refer to 
assembly as the integration of individual interactions 
into larger network structures that represent pathways, 
protein complexes and other components of the global 
cellular machinery. Given the numerous and seem-
ingly disparate types of physical and genetic interaction 
measurement (BOX 1), a central question regards how all 
of these different types precisely interrelate. To address 
this question, recent studies have attempted to categorize 

interactions beyond the initial division into genetic and 
physical. Several new terminologies are emerging from 
these studies — some concrete and some ambiguous, 
some distinct and some overlapping. which of these 
classifications will ultimately be most useful is still an 
open question; however, what is clear is that some form 
of interaction classification will be necessary if the vari-
ous interaction measurements are to be assembled into 
unified models.

Ordered versus unordered measurements. An ordered 
interaction measurement is one that, on the basis of 
the underlying measurement technology, has a clear 
interpretation with regard to biological directionality 
(cause and effect). As detailed in TABLE 1, some meas-
urement techniques imply that there is such an ordering,  
whereas others do not. For instance, a transcription 
factor–promoter binding interaction that is measured 
with chromatin immunoprecipitation (ChIP) is an 
ordered interaction, because the implication is that the 
transcription factor is regulating the downstream gene, 
not the reverse situation. A kinase–substrate interaction 
that is measured with a protein array is also ordered,  
in that it is clear which protein is the modifier and which 
protein is being modified. Genetic interactions also fall 
into ordered and unordered classes. An example of an 
ordered genetic interaction is epistatic masking, in which 
the phenotype of one mutant masks the phenotype of the 
other, indicating that the genes function in a regulatory 
hierarchy35 (BOX 2). A different instance of an ordered 
genetic interaction is an expression QTL (eQTL), which 
indicates that a polymorphism at one locus has an effect 
on gene expression at another (BOX 1). The litmus test 
for directed interaction measurements is this: does the 
interaction A–b have a different biological meaning 
from the interaction b–A? If the answer is a clear yes, 
then the interaction is ordered.

Conversely, unordered interaction measurements 
do not imply any clear cause-and-effect directionality 
among the interacting genes or proteins. One example 
is a protein–protein interaction measured by Y2H or 
TAP–MS. Although these measurements distinguish 
which protein is the bait and which is the prey, these 
terms are technical and signify nothing with respect 
to a cause-and-effect biological ordering. Likewise, a 
synthetic-lethal interaction is an example of a genetic 
interaction that does not order the two interacting 
genes. Classifying an interaction as unordered does not 
mean that, in terms of cellular function, the interaction 
transmits information in both directions — only that 

Table 1 | Classes of interactions and methods of identification

Physical genetic

Ordered Protein–gene (ChIP–chip51,52, ChIP–PET91,92); protein–RNA 
(RIP–chip112); protein–protein (kinase–substrate arrays36, 
LUMIER113); protein–compound114; microRNA–target115

Epistatic orderings (fitness profiling39,41,42); knockdown 
expression profiles (RNAi, deletion mutants58,59); 
expression QTLs101,116

Unordered Protein–protein (TAP–MS49,87,88, Y2H80–83); gene–gene (co-
regulon117); DNA–DNA (3C118, 5C119)

Synthetic lethality (SGA12, dSLAM65,97, chemogenomic 
profiling120, combinatorial RNAi99,100)

ChIP, chromatin immunoprecipitation; chip, microarray; coIP, co-immunoprecipitation; dSLAM, diploid-based synthetic lethality analysis on microarrays;  
PET, pair-end tag; RIP, ribonucleoprotein immunoprecipitation; SGA, synthetic genetic arrays; wt, wild type; Y2H, Yeast two-hybrid assay.
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the measurement technology is ambiguous with regard 
to the direction of biological signalling.

Transient versus stable interactions. Another means of 
classification relates to interaction dynamics — that is, 
distinguishing interactions that are transient in nature 
from those that form more stable linkages between 
proteins. examples of transient interactions include 
kinase–substrate phosphorylation or condition-specific 
binding of a transcriptional regulator to DNA, whereas 
interactions among the cytoskeleton or the nuclear pore 
complex might be relatively more stable. It is likely that 
some interaction-measurement technologies are better 
at detecting transient rather than stable interactions, 
whereas the opposite might be true for other tech-
nologies: for instance, in vitro kinase assays are, by their 
nature, better suited to detect transient interactions, 
whereas coIP pull-downs using TAP–MS are better at 
detecting stable protein complexes. For many other 
measurement technologies, such as Y2H and chroma-
tin immunoprecipitation combined with microarrays 
(ChIP–chip), it remains unclear whether the interactions 
that are identified are predominantly transient or stable. 

various studies have suggested anecdotally that Y2H 
might be less able to detect transient interactions26,36, 
but to date no definitive evidence has been put forth. 
Another study reported marginal success in separat-
ing transient versus stable Y2H interactions by cross  
referencing with TAP–MS studies19.

Between- versus within-pathway interactions. Several 
analyses of genetic interactions12,37,38 have sought to distin-
guish those interactions that fall within the same protein 
complex or pathway from those that connect two related 
complexes or pathways. Genetic interactions that connect 
different pathways are generally thought to bridge genes 
with redundant or complementary functions, where the 
deletion of either gene is expected to abrogate the func-
tion of one, but not both, pathways. Genetic interactions 
within pathways are thought to be caused mainly by the  
additive effects of deletions within the pathway or  
the absence of an effect upon additional deletions within 
the same pathway. At least to some degree, aggravating 
genetic interactions (see BOX 2 and the following section) 
have been shown to occur between pathways, whereas 
alleviating genetic interactions occur within pathways39. 

Box 2 | Cause-and-effect ordering in genetic interactions

Genetic interactions define logical, rather than physical, relationships between genes35. Formally, genetic 
interactions are determined and classified by comparing the observed phenotypes of the single mutants (Pa and Pb) to 
each other, to the double mutant (Pab) and to the wild type (Pwt), as shown in panel a. A genetic interaction is present if 
Pab deviates significantly from that which is expected on the basis of the combination of independent single mutants. 
Under a multiplicative model106,107, the expected phenotype is Eab = Pa * Pb. Given that a genetic interaction exists, it is 
classified as ‘aggravating’ if the observed phenotype of the double mutant is more severe than expected (Eab > Pab);  
if the opposite is true, then the interaction is considered ‘alleviating’ (Pab > Eab). ‘Synthetic lethality’ is an aggravating 
interaction in which Pab = 0 (no growth); alleviating interactions include suppression (Pab = Pa > Pb), masking (Pab = Pa < Pb), 
and co-equality (Pab = Pa, Pb). Finally, alleviating interactions can be defined as ordered or unordered depending on the 
relative severity of the two single-mutant phenotypes. If Pa > Pb or Pb > Pa, then the interaction is ordered. Otherwise, 
when Pa = Pb, no ordering of genes is implied. An ordered genetic interaction suggests that the two genes mediate 
different steps within a biochemical or signalling pathway35. 

Panel b shows a schematic metabolic network with simple examples of alleviating, aggravating and non-interacting 
gene pairs (represented by green, red and black arcs, respectively). Typically, alleviating versus aggravating 
interactions are considered to function in the same versus related pathways, respectively. Non-interacting genes, 
although perhaps distantly related in the context of overall cell viability or a far-downstream metabolite (indicated by 
broken reaction lines), do not function in the same pathway or related pathways, and thus do not deviate from 
expected growth. Figure modified with permission from Nature Genetics REF. 108  (2005) Macmillan Publishers Ltd. 
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The between versus within classification has also been 
applied to physical interactions19, in which interactions 
measured by both Y2H and TAP–MS were classified 
as within-complex interactions. In this work, Y2H  

interactions that were not supported by TAP–MS data 
were considered to consist mainly of between-complex 
interactions, although this assignment relies heavily on 
the TAP–MS data being comprehensive. 

Aggravating versus alleviating interactions. Several 
groups29,40,41 have described genetic interactions as either 
‘aggravating’, in which the double-mutant phenotype 
is more severe than expected given that of the single 
mutants, or ‘alleviating’, in which the double mutant 
is less severe than expected (BOX 2). The classical inter-
pretation of an aggravating genetic interaction, such as 
synthetic lethality, is that it connects non-essential genes 
that function in parallel or redundant pathways (note 
the overlap with the between- versus within-pathway 
categories above). Conversely, alleviating interactions 
have been thought to indicate genes within the same 
pathway42. In these cases, the rationale is that a single 
gene mutation is sufficient to deactivate the pathway, 
whereas mutating a second gene from the same path-
way does not further affect the phenotype and, in some 
cases, can even reverse it. Alleviating interactions can be 
further classified into ordered (for example, suppression) 
and unordered (for example, co-equal) subtypes (BOX 2). 
Although interactions that fall into these categories 
have long been used by classical geneticists43,44, they are 
now being generated at increasingly larger scales, as in 
the case of a recent study of 26 genes involved in the 
response to DNA damage41.

First- and second-degree interactions. A final and 
extremely useful classification has been proposed45,46 
which we describe as interactions of the first versus the 
second degree (alternatively, the first versus the second 
order; here the term degree is used to avoid conflict with 
the ordered–unordered terminology above). In contrast 
to the first-degree physical or genetic interactions that 
have been described thus far, in which there is direct 
evidence for an interaction, a second-degree interaction 
between molecules A and b is defined as one in which A 
interacts with many interactors of b. That is, the network 
neighbours of A and b significantly overlap, whether or 
not A and b are themselves first-degree neighbours.

These relationships are shown schematically in FIG. 2, 
for different combinations of the above interaction types. 
A second-degree protein–protein interaction (FIG. 2a) is 
the hallmark of a large protein complex25,47–49 in which 
any two proteins have many binding partners in com-
mon. This second-degree relationship has been used 
to predict new components and interactions within 
complexes48, and to assess the confidence of an interac-
tion given the clustering of its interaction partners50. An 
example of a second-degree ordered physical interaction 
is that which would occur between regulatory proteins 
that share downstream targets (FIG. 2b). Many groups51–55 
have reported combinations of transcription factors that, 
on the basis of physical data generated by techniques 
such as ChIP–chip, bind to a common set of gene pro-
moters (for example, Swi6 and Mbp1 in FIG. 3a, which 
form the MbF transcriptional complex53). when applied 
systematically, similarity between ChIP profiles has been 

Figure 2 |	second-degree	interactions	imply	first-
degree	relationships.	The four example networks (panels 
a–d) illustrate ways in which second-degree interactions 
between two proteins, A and B, can imply new first-
degree relationships that are complementary to the 
original experimental data. For protein–protein 
interactions (panel a), a second-degree interaction 
implies that A and B are in the same complex. For 
transcription factor–DNA interactions (panel b), A and B 
are possibly heterodimeric transcription factors that 
regulate a common set of genes. For aggravating genetic 
interactions (panel c), a second-degree interaction 
between A and B occurs if these proteins have common 
genetic interaction partners, implying that they act in the 
same pathway. For ordered genetic interactions (panel d), 
a second-degree interaction exists if mutations to A and B 
affect a common set of downstream genes or phenotypes, 
also suggesting that A and B act sequentially in a pathway.
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used to enumerate entire sets of transcriptional modules 
containing regulators that act together55.

Second-degree aggravating genetic interactions 
(FIG. 2c) were first identified by Tong et al.45, and were later 
described as showing ‘genetic congruence’46. because 
first-degree aggravating genetic interactions typically 
run between two redundant or synergistic pathways 
(BOX 2, FIG. 1e), a second-degree interaction of this type 
(genetic congruence) places the genes within the same 
pathway (for example, common synthetic-lethal part-
ners of members of the MeN pathway in yeast; FIG. 3b). 
Another example of a second-degree genetic interaction 
(FIG. 2d) is the case of two genetic perturbations that, 
when profiled individually using expression arrays, 
lead to the same set of differentially expressed genes 

(that is, ordered genetic interactions). This principle  
has been used to place genes within the galactose- 
utilization pathway on the basis of the similarity of their 
gene-knockout expression profiles56.

The importance of classification. Although it is not yet 
clear which of the above classifications will ultimately 
be most useful, given the size, scope and variety of the 
interaction data it seems clear that some classifica-
tion system will be necessary. Classification systems 
invoke terminology in order to reveal the relationships 
between objects and to achieve precision. Consider the 
following two ways to describe an interaction to col-
leagues: the classification “a second-degree interaction 
of the ordered physical type”; or the more colloquial 

Figure 3 |	examples	of	assembly	across	different	interaction	categories.	a | Members of the cohesin complex are 
regulated by Swi6 and Mbp1 transcription factors, which themselves are parallel members of the MBF transcriptional 
complex. b | Genetic interactions generated by synthetic-lethality screens identify parallel components of the 
Cdc14 release pathway, including members of the FEAR pathway, the MEN pathway and the Sin3–Rpd3 complex.  
c | Identification of putative Hsp90 substrates through combined yeast two-hybrid (Y2H) and tandem affinity 
purification coupled with mass spectrometry (TAP–MS) screening, and synthetic genetic array (SGA) and 
chemogenomic profiling using an Hsp90 inhibitor. d | Data that were obtained using chromatin immunoprecipitation 
combined with microarrays (ChIP–chip) were used to show that the transcription factors Hir1 and Hir2 regulate 
multiple members of a chromatin-related complex. e | Members of a SHU complex (Shu1, Shu2, Csm2 and Psy3) are 
interconnected by coequal genetic interactions and show epistatic ordering with both Sgs1 and Rad54 in the DNA 
recombination/repair pathway41. Part a modified with permission from REF. 109  (2007) National Academy of 
Sciences (USA). Part b modified with permission from Molecular Systems Biology REF. 46  (2005) Macmillan 
Publishers Ltd. Part c modified with permission from REF. 63  (2005) Elsevier Sciences. Part	d modified with 
permission from REF. 66  (2005) Biomed Central. Part e reproduced with permission from Nature Genetics REF. 41  
(2007) Macmillan Publishers Ltd.
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“an interaction between regulatory proteins that share 
downstream targets”. The second description certainly 
seems more intuitive; however, the first classification 
makes it clear that an entire set of interaction types have 
similar properties, in much the same way as the classifi-
cation Drosophila melanogaster reveals the relationship 
between this and other species.

In the case of interaction networks, an important 
benefit of classification is that it will enable an intel-
ligent system to compute across diverse networks to 
derive models. An algorithm can trivially parse the first 
option given above, whereas no modern computer is able 
to parse the structure in the second option. “A second 
degree interaction of the ordered physical type” tells us 
precisely how to treat the interaction and that it should 
be handled similarly to other interactions in this class. A 
more colloquial description would require the computer 
to have extensive knowledge of the english language. It 
would mean specifying a different set of rules for every 
kind of interaction and rewriting these rules whenever a 
new measurement technology was presented.

Assembly II: integration across categories
The above categories simplify the task of interaction 
assembly, by reducing the information gained from the 
various technologies to a few types, each with a distinct 
set of rules for integration. A number of studies have 
begun to combine interactions across several of these 
categories to derive integrated biological models (FIG. 4).

Integration of ordered interactions. One major direction 
has been to integrate ordered measurements of both 
genetic and physical interactions (FIG. 4a). Yeang et al.  
attempted to explain cause-and-effect genetic rela-
tionships with regulatory pathways inferred from 
databases of protein–DNA (that is, transcription factor– 
promoter) and protein–protein physical interactions57. 
The genetic relationships were drawn from a panel 
of ~300 expression profiles measured in response to 
single-gene deletion experiments in yeast58. For each 
experiment, the modelling procedure identified the most 
probable regulatory pathways of physical interactions 
that connect the deleted gene (the cause of perturbation) 
to genes that are differentially expressed in response to 
the deletion (the effects of perturbation).

As another example, several studies52,59 have analysed 
expression data from transcription factor knockouts to 
derive sets of genes, the expression of which is affected 
by each knockout (ordered genetic interactions). These 
studies were able to derive regulatory cascades of tran-
scription factors on the basis of integration of the genetic 
interactions with physical protein–DNA interactions, or 
by detecting second-degree genetic effects (for example, 
two transcription factor knockouts that affect the same 
set of target genes). Deplancke et al. have also applied 
such approaches in worms, in which expression changes 
in response to RNAi knockdowns were used to func-
tionally validate protein–DNA interactions measured by 
yeast one-hybrid assays60. 

A related approach has been used for interpreting 
eQTL data61. As discussed in BOX 1, eQTLs and knock-
out expression profiles provide similar information in 
that they both generate cause-and-effect ordered genetic 
linkages. Tu and co-workers integrated a co-expression-
based network with eQTLs in order to detect pathways 
that link a locus to a given target gene. Assuming that 
only one gene at each locus is the true regulator of the 
target, the algorithm’s task was to identify this true 

Figure 4 |	network	motifs	assembled	from	different	combinations	of	interaction	
measurements.	Physical interactions are shown as solid lines and arrows, and genetic 
interactions are shown as dashed lines and arrows. Part a shows an example of 
integrating ordered physical versus ordered genetic interactions, in which knockout of A 
or B results in changes in the activity of C, D and E (ordered genetic interactions), which 
are brought about because of changes in transcriptional activity or kinase–substrate 
binding (ordered physical interactions)52,57,110,111. Members of protein complexes  
(protein–protein interactions) can be connected by genetic interactions either within 
complexes (shown in part b) or between complexes (shown in part c) 37–39,42,46,65. In part d, 
members of a complex made up of F–G (protein–protein interactions) operate 
upstream of or epistatically to (ordered genetic) the complex H–I–J42,109. In part e, 
regulatory factors K and L cooperate to activate targets M, N and O (ordered physical) 
which function in parallel pathways (alleviating genetic46,51,66). Part f shows how the 
motifs of previous panels might combine within a still larger network, starting at a 
receptor protein and ending at transcription factors modulating the expression of 
target genes. Note that the motifs in each panel are summarized from the literature 
(see references provided) and are not intended as an exhaustive catalogue of all ways 
of integrating interactions.
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regulator among the multiple candidates within a locus. 
The method works by connecting potential candidate 
genes to the target by traversing a physical network. The 
candidate gene with the highest-scoring physical path is 
predicted to be the true regulator.

As they mature, such methods may be able to address 
several well-known challenges of eQTL analysis. First, 
owing to linkage disequilibrium and sparse markers, a 
single locus typically contains many genes, any of which 
is potentially the true source of perturbation (the ‘fine-
mapping’ problem62). A physical network helps resolve 
this problem because candidate genes that are only a 
few interactions away from their targets, or that cluster 
together in the same region of the network, are more 
likely to represent the true causal factors. A second 
challenge relates to statistical power. Classical linkage 
screens typically include upwards of 105 genetic mark-
ers, in which case the threshold for association is usu-
ally set high to counter the effect of multiple testing. In 
an integrated network analysis, one might expect that 
statistical power would increase, because significance 
depends on two independent lines of evidence: observa-
tion of high eQTL scores and correspondence with the 
physical network.

Integration of unordered interaction measurements. 
A second major group of integrative studies has 
focused on interrelating unordered types of physical 
and genetic interactions. As an example, Zhao et al. 
used a combination of Y2H and TAP–MS (detecting 
physical protein–protein interactions) as well as SGA 
and chemical genetic screening (detecting aggravating 
genetic interactions) to explore the physical and genetic 
neighbourhood of Hsp90 (REF. 63) (FIG. 3c). Similarly, 
vidal and colleagues integrated Y2H data with RNAi 
screens to refine a map of transforming growth factor-β 
(TGFb) signalling in C. elegans and to propose several 
DAF-7–TGFb modulators64. In both cases, the focus 
was on identification of proteins that act within the 
same or related pathways.

Following on from this work, Kelley and Ideker 
showed how an integrated analysis could discover 
such pathways automatically by identifying recog-
nizable patterns in the physical and genetic data37. 
Probabilistic models were developed to capture both a 
within-pathway and between-pathway explanation for 
genetic interactions (see FIG. 4b,c and the section above 
on between- versus within-pathway interactions). both 
models detect pathways as clusters of proteins that 
physically interact with each other much more often 
than would be expected by chance. The within-pathway 
model predicts that these clusters directly overlap with 
clusters of genetic interactions. The between-pathway 
model predicts that genetic interactions run orthogonal 
to the physical clusters, and looks for dense bipartite 
clusters of genetic interactions that span between clus-
ters (FIG. 1e). In aggregate, synthetic-lethal interactions 
were significantly more likely to link two redundant 
physical complexes than they were to occur within a 
single pathway, as anticipated by conventional genetic 
wisdom.

because synthetic lethal interactions are likely to span 
two pathways, genes in the same pathway should have 
overlapping genetic interaction partners — a second-
degree genetic interaction45. Ye et al. showed that genes 
that are connected by such a relationship were indeed 
more likely to participate in the same protein complex 
or pathway, and to share similar protein functions46.  
Pan et al.65 leveraged this idea further to identify func-
tional modules involved in genome maintenance using 
synthetic-lethal interactions.

Other combinations of interaction types. Other com-
binations of interaction types have not been as actively 
researched; for example, integrating ordered genetic 
interactions with unordered physical measurements, 
or the reverse. However, in one prominent example, 
Krogan and colleagues used the e-MAP system (epistatic 
miniarray profiling, a quantitative version of SGA intro-
duced by Collins et al.29) to identify epistatic interactions 
(ordered genetic) among protein complexes (unordered 
protein–protein interaction measurements) involved in 
the yeast secretory42 or chromosomal organization39 
pathways. The study of secretory pathways linked mem-
bers of the yeast GeT complex to functions within the 
endoplasmic reticulum–Golgi trafficking system. As an 
example of integrating ordered physical with aggravat-
ing genetic interactions (FIG. 4e), Zhang et al. defined a 
network motif that superimposes transcription factor– 
promoter binding interactions (ordered physical) with 
synthetic lethality66. An example of this motif is pro-
vided by the Hir1 and Hir2 transcription factors, which 
bind genes functioning in chromatin maintenance 
that are also interconnected by many synthetic-lethal  
interactions (FIG. 3d).

Annotating further details on the scaffold
Network assembly reveals the connectivity of the net-
work, producing a static wiring diagram of the molecular  
interactions that make up the molecular machinery in  
a cell. Numerous questions remain. For instance,  
in the case of ordered interactions, what is the direction 
of information flow? Is each upstream component an 
activator or repressor of the component that lies imme-
diately downstream? It is also desirable to understand 
the kinetics and dynamics of signal transduction; that 
is, to resolve the timescale of regulatory processes. The 
level of detail that is required depends on the question 
at hand. For instance, for identification of potential drug 
targets, it might initially be sufficient to know the posi-
tion of a protein in a static pathway map. Alternatively, 
if the system should be optimized to increase the yield of 
some biochemical product, more quantitative informa-
tion, including dynamics, might be necessary. 

In the case of interactions for which the ordering 
is ambiguous, one next step is to try to infer the direc-
tionality of the interaction (if one exists) and its effect 
(activating versus repressing). St Onge et al. were able 
to order some previously unordered genetic interac-
tions using theory from classical genetics on the basis of 
quantitative single- and double-mutant growth rates41. 
Alleviating genetic interactions were subdivided into 
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masking and suppression interactions (BOX 2), which 
were then used to order various genes involved in the 
DNA-damage response on the basis of a positive regu-
latory model35, including the suppression of SGS1 and 
RAD54 deletions by members of a Shu1, Shu2, Csm2 
and Psy3 complex (FIG. 3e). Nguyen and D’Haeseleer 
derived the inhibitory or activating activity of tran-
scriptional regulators through analysis of expression 
data and transcription factor binding motifs67. For each 
transcriptional regulator, a gene-specific cis-regulatory 
code was identified that determines the (positive or neg-
ative) interaction between the regulator and its target.  
Yeang et al. also attempted to infer additional details 
of protein–protein and protein–DNA interactions 
(directionality, repressing versus enhancing) through 
integration with expression data57,68.

Finally, the most detailed models quantify the inter-
action dynamics. Studies of interaction dynamics are 
numerous, and lie outside the scope of this Review; for 
an excellent treatment, see REF. 69. As one of many exam-
ples, the yeast osmotic-shock signalling pathway has 
been modelled kinetically70 using a system of differential 
equations to describe in detail the dynamic activation 
and deactivation of the pathway components, includ-
ing feedback control. Importantly, the model predicted 
unexpected features of the pathway that could later be 
experimentally verified, such as the role of phosphatase 
transcription in negative-feedback control. However, 
although differential equations certainly provide a 
high degree of detail, they often suffer from a lack of 
knowledge of kinetic constants. The most successful 
approaches so far have coordinated the measurement 
of kinetic constants iteratively, between modellers and 
experimental biologists, as the models can identify 
which parameters have the greatest influence over the 
simulation outcome69.

Conclusions
Given the hindsight of the Human Genome Project, what 
lessons can be learned and applied at the network level? 
Perhaps most trivially, both genetic and physical data are 
absolutely essential to our understanding of biological 
systems. Genetic data explain the ‘what’ of biological sys-
tems: what is the function of a gene, what is its phenotype 
and what is its target? Physical data explain the ‘how’: 
how does a gene or protein execute its function? Given 
that the final stages of the Human Genome Project were 
driven by physical shotgun sequencing (which revealed 
genome structure), it is easy to forget that genetic linkage  

studies were used to map most of the known disease genes 
(revealing gene function). A second important lesson is 
that full coverage is not needed for deriving meaningful 
biological information from the physical or genetic data. 
In case of the Human Genome Project, decades passed 
from the sequencing of the first human gene to completion  
of the full genome sequence71. In the case of interac-
tion networks, the examples covered in this Review 
suggest that the available interaction maps already 
have sufficient coverage to reveal the structure and  
function of hundreds of pathways. However, physical 
and genetic interaction networks provide a higher level 
of complexity (in two or three dimensions) compared 
with the one-dimensional genome sequence. Therefore, 
extra effort and care should be taken when analysing 
these data, especially considering that different tech-
nologies provide data on different types of interactions, 
and that networks are dynamic structures in contrast to 
the genome, which is relatively static.

A particularly important sub-class of genetic interac-
tions are combinations of SNPs that are causative for 
complex diseases72. In such cases, no single SNP can 
cause the disease alone, but in combination they form 
a condition under which the disease may develop. Such 
genetic relationships are close relatives of the synthetic-
lethal interactions that are measured in model organisms.  
Mapping these interactions onto physical networks 
will be an important way to elucidate the mechanis-
tic foundation of disease72,73. Such integration will be 
particularly important to the current wave of genome-
wide association studies, in which, often, little is known 
a priori about the functions of the significant loci74,75. To 
achieve this level of integration, greater coverage will be 
needed of the human protein network as well as that of 
the mouse, in which many QTL and eQTL studies are 
carried out. 

All of this is not to say that physical and genetic  
networks are the ultimate representation of cellular func-
tion. There are a host of other philosophical frameworks 
for understanding cells, some undoubtedly remaining to 
be discovered. For instance, the cell has been variously 
depicted as a compartmentalized bag of enzymes76, a  
collection of enzyme complexes77, a hydrogel78 or  
a broadcast transmission or Petri network79. However, it 
is clear that the current paradigm in molecular biologi-
cal research has shifted focus from protein sequences to 
protein networks. And there is much work to be done 
to fully realize this world view, before we graduate to 
the next one.
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