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Abstract

Massive efforts to sequence cancer genomes have compiled

an impressive catalogue of cancer mutations, revealing the

recurrent exploitation of a handful of ‘hallmark cancer

pathways’. However, unraveling how sets of mutated proteins

in these and other pathways hijack pro-proliferative signaling

networks and dictate therapeutic responsiveness remains

challenging. Here, we show that cancer driver protein–protein

interactions are enriched for additional cancer drivers,

highlighting the power of physical interaction maps to explain

known, as well as uncover new, disease-promoting pathway

interrelationships. We hypothesize that by systematically

mapping the protein–protein and genetic interactions in

cancer—thereby creating Cancer Cell Maps—we will create

resources against which to contextualize a patient’s mutations

into perturbed pathways/complexes and thereby specify a

matching targeted therapeutic cocktail.
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Protein–protein and genetic interactions fill
the gap between genotype and phenotype
The advent of next-generation sequencing technology

has fueled a massive accumulation of genomic sequences

over the past decade. In fact, any individual can now

sequence their entire genome for only $200, gaining
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unprecedented insight into their ancestry and predispo-

sition for certain diseases, particularly those with mono-

genetic or Mendelian drivers. Furthermore, genomic

sequencing of cancerous tissues is practically common-

place in many clinics, from whole genome [1] to targeted

arrays [2], bestowing oncologists large quantities of data

from which to, possibly, guide treatment decisions [3].

However, translating a list of patient-derived cancer

mutations into patient-specific treatment decisions

remains challenging, with only a few robust examples

of success existing today (e.g. imatinib for the BCR–ABL

fusion gene [4]).

Nevertheless, the analysis of genomic sequencing data

has provided significant insight into our understanding of

cancer biology. Numerous large-scale genomic studies,

such as those from The Cancer Genome Atlas (TCGA)

consortium, have demonstrated that cancer exploits a

recurring set of ‘hallmark cancer pathways’—pan-cancer

analyses estimate 90% of tumors have a driver alteration

in at least one of ten hallmark signaling pathways [5��].
However, complexity persists, as each patient’s tumor

possesses a heterogeneous mixture of mutations within

these, as well as many other, pathways. Even two patients

with the same tumor type (e.g. breast cancer) can possess

strikingly different sets of mutations, with some patients

possessing over 1000 mutations of unknown function,

many of which may regulate these hallmark pathways

in an unknown fashion. Consequently, and unsurpris-

ingly, this mutational diversity between tumors drives

differences in drug sensitivity, which are currently

extremely difficult to reliably predict on a patient-by-

patient basis.

The challenge of translating patient-derived mutational

profiles into patient-tailored drug cocktails highlights a

fundamental knowledge gap between genotype and phe-

notype in mammalian cell biology. In our view, navigating

between genotype (e.g. mutations, copy number altera-

tions, mRNA/protein expression) and phenotype (e.g. cell

proliferation and drug sensitivity) requires maps depict-

ing how each protein assembles into protein–protein

interaction networks (by creating protein–protein inter-

action maps), and thus into particular pathways and

protein complexes, and an understanding of how these

interactions functionally compel cellular processes (by

creating genetic interaction maps), such as cancer pro-

gression. In order to appropriately characterize disease-
www.sciencedirect.com
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specific alterations, protein–protein and genetic interac-

tion maps must be built by comparing ‘healthy’ (i.e. non-

transformed) to diseased cells, contrasting mutant to wild-

type networks, and evaluating differences across tissue

types. The creation of ‘differential’ [6] cancer cell maps

will provide a resource against which to contextualize new

patient mutation data into known cancer pathways or

propose synthetic lethal targeting strategies for pharma-

cological intervention (Figure 1).

Physical interactors of cancer drivers are
often cancer drivers, too
Protein–protein interactions (PPIs) often implicate a

functional relationship between proteins. For example,

PPIs typically denote proteins that work together to

accomplish a specific cellular task or co-drive disease

[7]. Often times, interactions can mediate crosstalk

between distinct cellular pathways. For example, the
Figure 1
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The cancer cell map for precision oncology.

The analysis of large numbers of tumor genomes has revealed key

mutations that drive cancer pathology. However, connecting the

genotype of tumor mutational profiles to phenotypes of drug sensitivity

is impeded by a fundamental lack of understanding into how protein–

protein (physical) and genetic (functional) interactions are configured to

drive cellular processes, such as proliferation and death. Seeded by

this large-scale analysis of tumor genomes (top), what is needed is a

systematic, context-diverse network mapping of the protein–protein

interactions for mutated and wild-type oncogenes and tumor

suppressors (left) as well as the identification of synthetic lethal

genetic interactions (right). PPI and GI mapping, two highly

complementary data sources, can then be assembled to form Cancer

Cell Maps, providing a working scaffold of molecular interactions and

the cell types/conditions under which they are active. New patient

data can then be queried against this resource by mapping alterations

to these hallmark cancer networks, which can inform precision

medicine (blue arrows).
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physical interaction between PIK3CA and KRAS, discov-

ered over two decades ago [8], reveals a poignant mecha-

nism of crosstalk between the ERK and PI3K signaling

pathways. This finding highlights the capability of

protein–protein interactions to reveal how the cancer

signaling network is configured, with implications for

cancer therapy [9]. Furthermore, the disruption or

strengthening of PPIs by mutations, which are found to

frequently occur at the interface between other proteins

or ligands, highlights the wide role these interactions may

play in regulating signaling activity or downstream effec-

tors [10]. In sum, proteins that physically interact with

known disease genes are themselves, also, potential dis-

ease drivers.

Given this line of thinking, one might expect protein

interactors of major cancer drivers to be enriched for

additional cancer drivers. To probe this hypothesis, we

ask: are physical interactors of major cancer drivers also

frequently mutated in cancer? To answer this question,

we assembled the union of several large protein–protein

interaction networks, including BioPlex [11], IRefIndex

[12], Mentha [13], Human Interactome [14], and HPRD

[15], and extract physical interactors (first neighbors) for

each of the fifteen most commonly mutated proteins

(copy number variations excluded) in each of eleven

distinct cancer types [16]. Interestingly, we found the

average mutation frequency of these interactors to be

significantly higher than size-matched random controls

for each cancer type, with the exception of lung adeno-

carcinoma (Figure 2a). We observed the same trend when

collapsing across all eleven cancer types—‘Pan-Cancer’

analysis (Figure 2b, top)—and also when assessing the

interactomes of 12 canonical DNA damage proteins

(Figure 2b, bottom). In sum, there appears to be a

significant enrichment of frequently mutated cancer pro-

teins that bind to other frequently mutated cancer

proteins.

These results highlight an opportunity to uncover new

biological processes and molecular mechanisms impli-

cated in cancer by probing these physical interactions.

In this article, we briefly review two such examples,

which possess a dual physical/functional relationship,

and showcase themes gaining momentum in the scientific

literature. First, we explore the physical and functional

interface between inflammatory proteins and oncogenes.

Second, we highlight recent insights into the interrela-

tionships between DNA damage proteins and upstream

proliferation-driving oncogenes. Lastly, we review a few

recent large-scale genetic interaction studies that dem-

onstrate the overlap between genetic (i.e. functional) and

protein–protein (i.e. physical) interactomes, illustrating

the synergy between these mapping approaches.
Current Opinion in Genetics & Development 2019, 54:110–117
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Physical interactors of cancer drivers are often cancer drivers, too.

(a) A human protein–protein interaction network was assembled from

publicly available data (union of BioPlex, IRefIndex, Mentha,

HumanInteractome, and HPRD networks, which amounted to 18 227

nodes and 333 490 edges) and probed for physical interactors (i.e. first

neighbors) of the top 15 most frequently mutated proteins (copy

number variations excluded) for each cancer type. This typically

amounted to �1500 interactors per cancer type. We then calculated

the average mutation frequency across these cancer driver physical

interactors (colored dots) for each cancer type (e.g. for breast invasive

carcinoma, the average was �0.65%) and compared them to the

average mutation frequencies of 100 000 random size-matched

permutations taken from the same dataset (violin histogram). We

calculated an empirical p-value for each PPI set, defined as the

fraction of random permutation sets of greater value. Interestingly, we

find the average mutation frequency of the true cancer driver PPI sets

for each cancer type, with the exception of lung adenocarcinoma, to

be mutated significantly more often than expected by chance. (b) A

pan-cancer analysis, performed by calculating the mutation frequency

for each gene across all 11 cancer types in (a), also showed the PPIs

of the top 15 most frequently mutated proteins to be mutated

significantly more often than expected by chance (top; ‘Pan-Cancer’).

In addition, we also assessed the average mutation frequency of

known physical interactors of 12 canonical DNA damage proteins

(CHEK1, CHEK2, RAD51, BRCA1, BRCA2, MLH1, MSH2, ATM, ATR,

MDC1, PARP1, and FANCF), which we also found to be mutated

significantly more often than expected by chance (mutation

frequencies as calculated for ‘Pan-Cancer’ analysis). These results

highlight the role of PPIs as potential drivers of cancer pathology and

suggest an additional point of regulation for therapeutic intervention.

Empty white dots denote the median of the randomly permuted sets,

and the adjoining grey rectangles denote the interquartile range.
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Physical interactions between inflammatory
proteins and oncogenes
The relationship between inflammation and cancer is not

a recent discovery. In fact, the first known observation

spans back to 1863, when Rudolf Virchow noticed cancer

at sites of chronic inflammation [17]. Inflammation is well

appreciated to play a role in several aspects of tumor

development, from oncogenesis to metastasis, and

patients with inflammatory diseases such as hepatitis,

colitis, and pancreatitis display a higher incidence of

cancer [18]. Conversely, treatment with non-steroidal

anti-inflammatory drugs (NSAIDs) has displayed anti-

cancer activity for several cancers [19–21], as have anti-

inflammatory physiological processes, such as getting

regular exercise [22,23]. Although many important obser-

vations over the years have linked cancer with inflamma-

tory processes, the direct physical regulation of cancer

driver proteins by inflammatory proteins is only recently

being investigated [24]. Our cancer driver PPI analysis

above identified several inflammatory proteins—includ-

ing STAT3, SMAD3, NFKBIA, STAT5B, and LRP1

—that bind to top cancer drivers. To what extent do

physical interactions between inflammatory molecules

and cancer drivers mediate inflammation-induced cancer

pathology? This remains an open question in the field and

highlights exciting avenues for future research.

As an example, our analysis highlights a relationship

between EGFR and STAT3 signaling. Specifically,

EGFR is known to interact with STAT3 as well as the

protein tyrosine phosphatase PTPRD, a commonly

mutated [25,26] known negative regulator of STAT3

[27]. EGFR is known to activate and maintain STAT3
www.sciencedirect.com
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signaling, driving transcriptome-rewiring events that pro-

mote cancer progression and drug resistance [28]. In

addition, the EGFR-STAT3 system leads to the produc-

tion of Il-6, an inflammatory cytokine, a feedback process

which is thought to underlie tumor initiation [29] and

metastasis [30]. Inhibition strategies that co-ablate phos-

phorylated EGFR and STAT3 may be a potent anti-

cancer therapy in some contexts [31]. This is but one

example of several representing a dual physical and

functional relationship between an inflammatory protein

and a cancer driver; though, many more are expected to

emerge in the future.

Physical interactions between DNA damage
response proteins and oncogenes that drive
proliferation
Another signaling interface of interest is between DNA

damage response (DDR) proteins and oncogenes that

drive proliferation, an interrelationship increasingly

reported in the scientific literature though not fully

understood. A deeper understanding of this interface

could help identify patient-specific therapies, such as

new combinations of PARP and kinase inhibitors target-

ing angiogenesis [32], PI3K/AKT [33], RAS/MAPK [34�],
WEE-1 [35] and ATR/CHEK1 [36] pathways in order to

overcome PARP inhibitor resistance. In order to identify

known physical interactions between DDR proteins and

pro-proliferative oncogenes, we searched our PPI net-

work for physical interactors of 12 canonical DDR pro-

teins (CHEK1, CHEK2, RAD51, BRCA1, BRCA2,

MLH1, MSH2, ATM, ATR, MDC1, PARP1, and

FANCF). Interestingly, we find these DDR gene inter-

actors to be more frequently altered than expected by

chance, calling attention to the central role DDR proteins

and their interactors play in cancer progression

(Figure 2b, bottom).

Of particular interest, we observed several interactions

between DDR proteins and both the Ras/MAPK and

PI3K/AKT signaling pathways, interrelationships that

are gaining increasing attention in the scientific literature.

For instance, a recent study highlighted the interplay

between PARP and MAPK signaling [34�], finding strong

synergy between dual MEK and PARP inhibition for RAS

mutant cancers in vivo. This interplay is corroborated by

several known physical interactions between PARP1 and

various MAPK pathway members, including MAPK1,

MAPK3, and MAPK13. An additional example is the

interplay between BRCA1 and AKT signaling; specifi-

cally BRCA1 deficiency was found to drive AKT activa-

tion [37], which was involved in mediating tumorigenesis

in mice likely by promoting chromosome instability [38].

Activated AKT in BRCA-deficient cells was found to

impair CHEK1 nuclear localization and CHEK1 interac-

tion with RAD51, leading to defects in homologous

recombination [39]. Furthermore, AKT inhibition dis-

played efficacy against BRCA1-mutated mammary
www.sciencedirect.com 
tumors in mice [40]. Publicly available PPI data indicate

a physical interaction between AKT1 and several DDR

proteins, including BRCA1, CHEK1, and MSH2 as well

as between PIK3CA and ATR. These examples illustrate

how PPIs can help explain known relationships between

distinct pathways, or even uncover new potential pathway

relationships. Considering these insights, further defining

how interactions between DDR proteins and pro-prolif-

erative oncogenes regulate cancer progression, growth

suppression, and/or drug resistance is an exciting avenue

for future research.

Genetic interaction mapping often reveals
functional protein–protein interactions
Uncovering functional PPIs can be challenging, as many

physical interactions, when perturbed, do not enact a

phenotypic change. Genetic interaction (GI) mapping,

pioneered in the early 2000s, is a powerful technique to

systematically reveal functional relationships between

genes, which often indicate the presence of a physical

interaction. GI mapping involves the pairwise perturba-

tion of genes (e.g. knockout, knockdown or overexpres-

sion) in order to elucidate how one gene modulates the

phenotype of the other. Typically, cell viability is used as

the phenotypic readout, where GIs that increase cellular

fitness are said to be ‘positive’ and GIs that decrease

cellular fitness are said to be ‘negative’. GI mapping is

often used to uncover new functions of genes [41,42],

enabling a hierarchical organization of gene products into

functional complexes and pathways, and to identify

synthetic–lethal interactions with relevance to cancer

combination therapy. As alluded to, the presence of a

functional (i.e. genetic) interaction often indicates a

physical interaction, and vice versa, highlighting the

synergy between combined GI and PPI mapping

initiatives.

The majority of GI studies were performed in the bud-

ding yeast Saccharomyces cerevisiae [43,44]. More recently,

however, GI mapping has entered mammalian cell con-

texts. In human cells, GI screens have already tackled

diverse topics, including chromatin regulation [45,46],

ricin susceptibility [47], drug target interactions [48],

and functioning of cancer oncogenes/tumor suppressors

[49–51], among others. In one of the largest GI screens

ever conducted in human cells, Horlbeck et al. assessed

222 784 gene pairs using a pooled dual-sgRNA CRISPR

interference (dCas9-KRAB) loss-of-function lentiviral

vector screen in K526 and Jurkat cells, two human

immune cell lines [52��]. Interestingly, gene pairs with

highly correlated GI fitness profiles were enriched for

known physical interactions from the STRING physical

interaction database. They further uncovered new mech-

anism, discovering TMEM261, a previously poorly char-

acterized gene, as a critical regulator of oxidative phos-

phorylation similarly to core mitochondrial complex I
Current Opinion in Genetics & Development 2019, 54:110–117
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proteins, to which TMEM261 is known to physically

associate [53].

Computational analyses of GI datasets have also har-

nessed much insight, most of which further highlight

the intersection between GIs and PPIs. Pan et al. [54]

utilized data from Project Achilles [55], a compendium of

lentivirus-based pooled shRNA and CRISPR/Cas9

genome-wide across cell lines, to cluster GI fitness pro-

files across cell lines (N = 342) [56�]. They found �40% of

complexes from the CORUM [57] protein complex data-

base to possess significantly correlated GI profiles. In

addition, correlated GI profiles were also used to annotate

previously unknown protein complexes. In another study,

Rauscher et al. developed a computational framework

(‘MINGLE’) to integrate 85 CRISPR/Cas9 screens with

mutation, copy number, and mRNA expression data from

60 different cancer cell lines [58��]. This study used a

random effects statistical model to identify significant

relationships between normalized CRISPR scores and

genetic alterations across cell lines (17 545 significant

GIs). Again, genes with similar interaction profiles were

enriched for co-complex membership. This study

revealed PRKCSH, GANAB, and UGP2 as novel positive

regulators of the Wnt/b-catenin pathway by searching for

genes possessing a negative genetic interaction score with

RNF43, a known negative Wnt pathway regulator. Inter-

estingly, PRKCSH and GANAB also physically interact

to form the glucosidase II complex.

These studies highlight the cohesion between GI and

PPI mapping approaches—where the presence of one

interaction type typically implicates the other—and

depicts the synergy between the two approaches in

systematically uncovering new biology with relevance

to cancer and other diseases.

Building cancer cell maps for precision
medicine
As mentioned above, genomic sequencing of cancerous

tissues has led to an impressive catalogue of disease-

driving mutations. Although many cancers harbor altera-

tions in well-known cancer drivers, such as TP53 or

EGFR, a tumor may additionally possess anywhere from

10 to over 1000 rare somatic genetic alterations that

remain uncharacterized. We and others [59,60,61��]
hypothesize that while these mutations may appear rare

when viewed independently, they likely converge on a

smaller number of protein complexes, signaling cascades,

and transcriptional regulatory circuits. By recapitulating

this at network-level, we anticipate significant pathway-

based signals to emerge, signals likely imperceptible by

considering individual mutations in isolation. Towards

building a network-level view, we believe it critical to

compare networks from ‘healthy’/non-transformed cells

to diseased cells, to study both mutant and wild-type

protein interactomes, and to compare across distinct
Current Opinion in Genetics & Development 2019, 54:110–117 
cancer types. The unbiased and systematic collection

of network-level data in this way, utilizing both physical

(e.g. large-scale AP-MS) and genetic (e.g. large-scale

CRISPR screens) approaches, is needed to create Cancer

Cell Maps that delineate the disease-specific molecular

wiring of the cell and how it differs between cancer types.

To probe these questions and hypotheses, we [61��] and

others [62,63] have pioneered various cell mapping initia-

tives to delineate the molecular interactions that drive

cancer. Once created and validated, we envision Cancer

Cell Maps will be integrated into the oncologist’s toolkit,

against which a patient’s specific mutations can be que-

ried in order to identify the pathways and protein com-

plexes that are perturbed, enabling the rational and

precise selection of appropriate targeted therapies

(Figure 1).
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