
F1000Research

Open Peer Review

, PolytechnicSergey Nepomnyachiy

Institute of New York University USA

, Ontario Institute forGuanming Wu

Cancer Research Canada

Discuss this article

 (0)Comments

2

1

#SPRINGMESSAGE("ENUM.${ENUM.CLASS.SIMPLENAME}.${ENUM.NAME()}$!{SUFFIX}")

CyREST: Turbocharging Cytoscape Access for External Tools
 via a RESTful API [version 1; referees: 2 approved]

Keiichiro Ono , Tanja Muetze , Georgi Kolishovski , Paul Shannon , Barry Demchak1

Department of Medicine, University of California, San Diego, CA, 92093-0688, USA
Imperial College London, London, SW7 2AZ, UK
Bioconductor, Boston, MA, 02125, USA
Fred Hutchinson Cancer Research Institute, Seattle, WA, 98109, USA

Abstract
As bioinformatic workflows become increasingly complex and involve multiple
specialized tools, so does the difficulty of reliably reproducing those workflows.
Cytoscape is a critical workflow component for executing network visualization,
analysis, and publishing tasks, but it can be operated only manually via a
point-and-click user interface. Consequently, Cytoscape-oriented tasks are
laborious and often error prone, especially with multistep protocols involving
many networks.

In this paper, we present the new cyREST Cytoscape app and accompanying
harmonization libraries. Together, they improve workflow reproducibility and
researcher productivity by enabling popular languages (e.g., Python and R,
JavaScript, and C#) and tools (e.g., IPython/Jupyter Notebook and RStudio) to
directly define and query networks, and perform network analysis, layouts and
renderings. We describe cyREST’s API and overall construction, and present
Python- and R-based examples that illustrate how Cytoscape can be integrated
into large scale data analysis pipelines.

cyREST is available in the Cytoscape app store (http://apps.cytoscape.org)
where it has been downloaded over 1900 times since its release in late 2014.

This article is included in the Cytoscape apps
channel.

1 2 3 4 1

1

2

3

4

 Referee Status:

 Invited Referees

 version 1
published
05 Aug 2015

 1 2

report report

 05 Aug 2015, :478 (doi:)First published: 4 10.12688/f1000research.6767.1
 05 Aug 2015, :478 (doi:)Latest published: 4 10.12688/f1000research.6767.1

v1

Page 1 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://f1000research.com/articles/4-478/v1
http://f1000research.com/articles/4-478/v1
http://f1000research.com/channels/cytoscapeapps
http://f1000research.com/channels/cytoscapeapps
http://f1000research.com/articles/4-478/v1
http://dx.doi.org/10.12688/f1000research.6767.1
http://dx.doi.org/10.12688/f1000research.6767.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.6767.1&domain=pdf&date_stamp=2015-08-05

F1000Research

 Barry Demchak ()Corresponding author: idekerlab.bdemchak@gmail.com
 Ono K, Muetze T, Kolishovski G How to cite this article: et al. CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful

 2015, :478 (doi:)API [version 1; referees: 2 approved] F1000Research 4 10.12688/f1000research.6767.1
 © 2015 Ono K . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 This work was supported with funding from the National Resource for Network Biology (NRNB) under award numbers P41Grant information:

RR031228 and GM103504 assigned to Trey Ideker.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 05 Aug 2015, :478 (doi:) First published: 4 10.12688/f1000research.6767.1

Page 2 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://dx.doi.org/10.12688/f1000research.6767.1
http://dx.doi.org/10.12688/f1000research.6767.1

Introduction
Because of its robust network analysis and visualization capabilities
coupled with its vibrant user and developer community, Cytoscape
3 has become a tool of choice for studying large network-oriented
*omics data sets on common workstations and for publishing results.
However, even as Cytoscape1 is well positioned to handle custom-
ized *omics workflows, bioinformaticians’ need to quickly and effi-
ciently create complex, varied, and repeatable workflows exceeds
the capabilities of Cytoscape’s existing automation features. At the
same time, bioinformaticians have embraced a class of highly flex-
ible tools consisting of fully fledged programming environments
(e.g., IPython/Jupyter Notebook2, RStudio, and MATLAB) coupled
with programming languages (e.g., Python and R) and highly capa-
ble and flexible bioinformatic libraries.

Inasmuch as these tools address the data collection and analysis
portions of typical bioinformatic workflows, Cytoscape comple-
ments them by addressing visualization, additional analysis, and
network publication. To date, combining these tools with Cytoscape
has seen only limited success, largely because of the limitations
of Cytoscape’s automation interfaces and its point-and-click user
interface. Consequently, this integration has been labor intensive,
inconvenient, and often unrepeatable, particularly as the complexity
of analysis and visualization processing increases.

We created the cyREST Cytoscape app to enable automated access
to the Cytoscape network and visualization models directly from
within these tools, thereby exposing Cytoscape visualization, anal-
ysis, and publishing features in complex, varied, and reproducible
bioinformatic workflows as shown in Figure 1.

cyREST transforms Cytoscape into a REST-based microservice3
easily callable by workflows coded in REST-enabled languages
such as Python, R, and Java. It is complemented by language-
specific libraries that simplify Cytoscape access and harmonize
native data models with Cytoscape’s network model as shown in
Figure 2. (REST4 is short for Representational State Transfer.)

cyREST complements Cytoscape’s existing Command Line Tool,
where cyREST operates on Cytoscape’s data and Command

executes Cytoscape commands. Since its original beta release date
in late 2014, cyREST has been downloaded over 1900 times.

In this paper, we explain how cyREST relates to existing Cytoscape-
oriented automation solutions, and then describe the design and
use of cyREST itself. Finally, we give examples of cyREST’s use
from applications written in Python (using IPython Notebook) and
R (using RStudio).

Existing tools
Several Cytoscape apps and plugins tackle tool interoperability
and workflow reproducibility challenges (Table 1), most notably
Cytoscape 3’s Command core module, but also including plugins
deprecated along with Cytoscape 2.

Cytoscape 3’s Command Line Tool5 facilitates task automation via
its own domain specific language, which provides access to high-
level Cytoscape functions using a separate REST server within
Cytoscape. While Command can execute individual commands
(e.g., for loading and applying layouts) and sequences of commands
(as scripts), it has no provision for accessing the network, style, and
visualization information available through cyREST. Command is
a complement to cyREST, where the combination greatly improves
interoperability between Cytoscape and workflow-capable exter-
nal tools, which contribute looping and control flow. A workflow
can intermix Command and cyREST calls without conflict – they
address different capabilities within Cytoscape.

A notable alternative to cyREST is the Cyrface app6, which allows
R and Bioconductor7 functions to be executed from Cytoscape 3,
with the results returned to Cytoscape 3 – the opposite of a cyREST
call. While this approach enables Cytoscape to act as the workflow
orchestrator, it requires that a target application act as a server,
which often requires idiosyncratic and complex support for each
target application. So far, this approach has been taken only for
interfacing to R.

Numerous approaches to interoperability were implemented as
ScriptingEngine8-based plugins for Cytoscape 2, now deprecated.
Such plugins were created for executing scripts written in languages

Figure 1. Cytoscape working with other components to create bioinformatic workflows.

Page 3 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

Table 1. Existing Cytoscape apps to control Cytoscape from scripts.

Application Name Description Supported
Version

Command5 A domain specific language to automate simple
tasks in Cytoscape

3.x and 2.x

Cyrface6 An interface to call R packages from Cytoscape 3.x

ScriptingEngine8 Exposes Cytoscape API to scripting engines for
JVM (JavaScript, Jython, JRuby, etc.)

2.x

CytoscapeRPC15 Plugin to call low-level Cytoscape API through
XML-RPC

2.x

RCytoscape17 Bioconductor package to call Cytoscape from R
using CytoscapeRPC

2.x

Figure 2. Relationship of Cytoscape to Bioinformatics-oriented Tools and Languages, where cyREST is in green. Harmonization
libraries are green and blue, representing an interface between workflow code and cyREST.

(e.g., JRuby9, Jython10, Groovy11, Clojure12, and JavaScript13).
While these scripts had full access to Cytoscape’s comprehensive
public API, their tight coupling to the Cytoscape runtime made
them difficult to write, debug, and maintain. Because they were
built on top of the Java virtual machine (JVM) and shared Cyto-
scape’s JVM, they had little access to increasingly capable and
standardized third party native libraries (e.g., SciPy14 for Python).
By contrast, the cyREST approach allows control of Cytoscape by
best-of-breed tools and languages running independently as sepa-
rate processes and leveraging best-of-breed native libraries. Con-
versely, while plugin implementations could interact with the user
via dialog boxes directly within Cytoscape 2, scripts executing in
separate processes run within their own windows, disconnected
from Cytoscape 3.

Similar to the cyREST approach, the CytoscapeRPC plugin15 ena-
bled independent scripts (e.g., Python) to create, query, and modify
networks and visual styles in Cytoscape 2, but using an XML-
RPC16 protocol instead of REST. Given the rapid adoption of REST
conventions and supporting infrastructure, use of XML-RPC is

becoming less common. Notably, RCytoscape17 is a Bioconductor
package that leveraged CytoscapeRPC to enabled R applications
to control Cytoscape 2. For Cytoscape 3, RCytoscape has been
replaced by the RCy3 package in Bioconductor release 3.2, which
leverages cyREST instead and is described below.

What is cyREST?
cyREST is a Cytoscape app that exposes Cytoscape network-
related data structures and publishing functionality as a microserv-
ice callable via a REST protocol by external tools and languages.
To date, it offers over 113 API calls, as documented at http://ideker-
lab.github.io/cyREST, where each API call accepts JSON-encoded
values18 and returns JSON-encoded results.

Given that most modern tools and languages can call JSON-
oriented REST services either directly or through well-vetted librar-
ies, cyREST enables near-universal access to Cytoscape. However,
such tools and languages often define data structures well tuned for
use with their own specialized libraries that manipulate network-
oriented data. To ease and accelerate the programming process,

Page 4 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://idekerlab.github.io/cyREST
http://idekerlab.github.io/cyREST

cyREST provides harmonization libraries designed to make calling
cyREST natural and native within a tool or language. Harmoniza-
tion libraries are described below.

Note that while cyREST enables Cytoscape to act as a service, it
is intended to serve only one client application at a time, where the
client and Cytoscape run on the same workstation. Cytoscape itself
remains capable of working on a single Cytoscape session at a time
and maintains a visible window accessible to a user – Cytoscape
does not operate in so-called headless mode. As a result, a client
application is free to implement a workflow that intentionally sets up
a network within Cytoscape so that a user can work further with it.

This section describes both the cyREST design and implementation
and the implementation of harmonization libraries. It then presents
example workflows created by combining standard data analysis
tools with Cytoscape/cyREST.

Design
cyREST is a Cytoscape app that exposes the Cytoscape network
data model to external tools and languages. It presents an API
based on principles of REST, as do other popular biology-related
data services, including those provided by EBI19. As a result,
cyREST leverages REST facilities in existing tools and languages
already built and vetted for use with other REST-based services.
The definition and packaging of individual API functions takes
advantage of lessons learned in building similar interfaces for
Cytoscape 2.

cyREST APIs represent all Cytoscape data objects and functions
as resources according to principles of Resource-oriented Design
(ROD)20. Data objects include networks, tables, and Visual Styles.
Functions include applying layout algorithms on networks, updat-
ing Visual Styles, and performing statistical analysis. Under REST
and ROD, each resource is encoded as a URL where hierarchy is
represented as segments within the URL. For example, the URL
http://localhost:1234/v1/tables/count can be decomposed into a

REST server (http://localhost), port number (1234), an API version
(v1), a resource (tables), and an attribute of the resource (count).
So, this URL represents the count of global tables maintained by
Cytoscape. Table 2 shows a sampling of resources available under
the http://localhost:1234/v1 URL, with a more comprehensive list
in the cyREST document at http://idekerlab.github.io/cyREST).

cyREST follows ROD recommendations for sensible mappings
between CRUD operations (create, read, update, and delete) and HTTP
operations (POST, GET, PUT, DELETE) on data objects. Unless
otherwise specified in the cyREST documentation, all HTTP opera-
tions accept or return values encoded as JSON. For example, GET
http://localhost:1234/v1/networks returns a list of networkIds in an
array (e.g., [1,2,3]). GET http://localhost:1234/v1/networks/networkId
returns all nodes, edges, tables, and other data relating to network net-
workId in the Cytoscape.js21 JSON format.

For functions, ROD provides less guidance for CRUD/HTTP map-
pings or URL encoding. cyREST addresses this by grouping actions
under http://localhost:1234/v1/apply (using GET operations) as
illustrated in Table 3.

Implementation
cyREST is implemented as a Cytoscape app written in the Java
programming language. It uses the Jersey JAX-RS22 library to
implement the RESTful API, and provides access to data object
and function operations as calls to public Cytoscape APIs. Under
REST, each client request is phrased as an HTTP command (e.g.,
GET http://localhost:1234/v1/networks HTTP/1.1) and the reply is
returned as a JSON structure.

cyREST uses an embedded Grizzly HTTP server to receive and proc-
ess client requests, where each HTTP request’s URL is mapped to a
method in a resource manager class created by cyREST and registered
with Grizzly. Each resource method declares the URL it services.
When Grizzly receives a REST request, it calls the resource function
registered for the URL, which calculates and returns a REST reply.

Table 2. Examples of Cytoscape data resources exposed by cyREST.

URL Segment Data Resource

networks list of all networks (as networkId)

networks/networkId/edges edges within network networkId

networks/networkId/nodes nodes within network networkId

networks/networkId/tables tables within network networkId

networks/networkId/views views of network networkId

networks/networkId/groups node groupings within network networkId

session session-wide attributes (e.g., name)

styles visual styles that can apply to networks

styles/styleName/mappings values of visual properties for style styleName

Page 5 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://localhost:1234/v1/tables/count
http://localhost
http://localhost:1234/v1
http://idekerlab.github.io/cyREST
http://localhost:1234/v1/networks
http://localhost:1234/v1/networks/networkId
http://localhost:1234/v1/apply
http://localhost:1234/v1/networks HTTP/1.1

For example, the NetworkResource defines a function that returns the
number of Cytoscape networks in the current session, shown in the
code fragment below. Note that the fragment defines its associated
HTTP command, URL, and JSON output via Java annotations.

@Path(“/v1/networks”)
public class NetworkResource extends
 AbstractResource {
 @GET
 @Path(“/count”)
 @Produces(MediaType.APPLICATION_JSON)
 public String getNetworkCount() {
 // Call Cytoscape to get count of network
 - return value as COUNT
 return
 getNumberObjectString(JsonTags.COUNT,
 networkManager.getNetworkSet().size());
}

As with most Cytoscape apps, cyREST is initialized in its cyActiva-
tor function, which creates resource classes that reference all Cyto-
scape APIs to be used in servicing client requests. These include
factories and managers for networks, network views, visual map-
ping, layout algorithms, groups, tables, sessions, and others.

The default HTTP port for cyREST is 1234, which can be changed
by creating or modify the Cytoscape rest.port property (via Cyto-
scape’s Edit | Preferences | Properties dialog). Note that security-
conscious workstations should firewall the cyREST port to prevent
unintended outside access.

To test for the availability of a cyREST server, use an Internet
browser to view the URL http://localhost:1234/v1/, which returns
JSON-formatted version information similar to:

{
 “apiVersion”:“v1”,
 “numberOfCores”:4,
 “memoryStatus”: {
 “usedMemory”:517,
 “freeMemory”:1445,
 “totalMemory”:1963,
 “maxMemory”:6917
 }
}

Each cyREST function is exercised and validated before release by
a suite of JUnit-based tests.

Harmonization libraries
While most programming languages make calling REST APIs and
composing or parsing JSON simple, the data returned by cyREST
may not be organized efficiently for ease of use in a particular lan-
guage or with that language’s libraries. To maximize programmer
productivity, we provide harmonization libraries (see Figure 2) to
perform efficient cyREST calls on one hand, and present an inter-
face easily used by programmers on the other hand. To date, we
provide harmonization libraries for Python and R, and we expect
to produce others.

py2cytoscape harmonization library for Python
The Python programming language has become popular among sci-
entists and data analysts because of its rich collection of open source
data analysis packages and a large developer community. It is an
excellent tool for data cleansing, manipulation, analysis, and visual-
ization; its igraph23, NetworkX24, and graph-tool25 packages are use-
ful components in network data analysis workflows. In a workflow,
it functions well as a glue that connects multiple heterogeneous
computing resources, public databases, and private data files to build
data analysis pipelines on workstations and computing clusters.

We created the py2cytoscape library to enable Python-based work-
flows to easily incorporate Cytoscape functionality by wrapping
Python calls to cyREST and performing automatic translations
between these packages’ data structures and cyREST’s JSON. For
example, the following code creates a new Cytoscape network
by using py2cytoscape calls, and replaces 16 lines that would be
necessary when calling cyREST directly – see https://github.com/
idekerlab/py2cytoscape/blob/develop/README.md for the direct
cyREST calls.

from py2cytoscape.data.cyrest_client import
 CyRestClient

cy = CyRestClient()
network = cy.network.create(name=’My Network’,
 collection=’My network collection’)
print(network.get_id())

py2cytoscape is open source and is available from the PyPI reposi-
tory (https://pypi.python.org/pypi/py2cytoscape).

Table 3. Examples of Cytoscape function resources exposed by cyREST.

URL Segment Function Resource

edgebundling/networkId apply edge bundling to edges in network networkId

fit/networkId fit network networkId to its window

layouts/algorithm/networkId apply a layout algorithm to network networkId

styles/styleName/networkId apply visual style styleName to network networkId

Page 6 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://localhost:1234/v1/
https://github.com/idekerlab/py2cytoscape/blob/develop/README.md
https://github.com/idekerlab/py2cytoscape/blob/develop/README.md
https://pypi.python.org/pypi/py2cytoscape

Note that py2cytoscape provides a widget that renders a network in
cytoscape.js JSON format and then visualizes the network interac-
tively within a Jupyter/IPython Notebook26 document, an example
of which is at http://nbviewer.ipython.org/github/idekerlab/py2cy-
toscape/blob/develop/examples/New_wrapper_api_sample.ipynb.

RCy3 harmonization library for R
R is a particularly important platform for biologists because of the
complimentary Bioconductor library. We are collaborating with the
Bioconductor group to produce the RCy3 harmonization library for
R27, which leverages cyREST to realize native R network visuali-
zation, analysis, and publishing functions. Its igraph, graph28, and
RBGL29 packages are useful components for network data analysis
workflows.

Sample workflows
A typical workflow performs data acquisition and integration,
analysis, network visualization, and publishing. Often, these steps
are performed one at a time by humans executing one discreet tool
after another, possibly resulting in high labor costs, low throughput,
high error rates, and an inability to reproduce the workflow reliably.
In contrast, Figure 1 shows a workflow orchestrated by external
tools such as Python and R, which interact with Cytoscape to per-
form parts of the workflow. As supplementary material, we provide
downloadable sample workflows that incorporate and demonstrate
cyREST functionality using py2cytoscape and RCy3 harmoniza-
tion libraries.

Note that Cytoscape/cyREST is designed to run on the same work-
station as the workflow that calls it – Cytoscape maintains its own
application window, and workflows may find advantage in solicit-
ing users directly within Cytoscape.

Python examples
Our Python-based sample workflows are simple reflections of real
world data analysis and visualization pipelines (see Figure 1) and
use standard Python packages as much as possible. They are located
in https://github.com/idekerlab/cy-rest-python and are viewable
using the nbviewer web application (http://nbviewer.ipython.org/)
in Jupyter Notebook format.

Some Python packages are more capable or faster than equivalent
Cytoscape functions, so the examples use them instead of calling
Cytoscape. For example, Pandas30 prepares and analyzes data by
using NumPy31 and SciPy library for processor-intensive tasks such
as community detection.

The examples use the py2cytoscape harmonization libraries to dem-
onstrate efficient cooperation between Python workflows by using
NetworkX, igraph, and Cytoscape to integrate and visualize data
generated in external tools. They show:

• Data import from multiple data sources (remote/local)

• Reformat and integration

• Statistical network analysis

• Visualization

For instance, the “Import KEGG pathways from web service”
example demonstrates a typical biological data integration and
visualization process involving KEGG databases32:

• Send a disease name query to the KEGG API

• Filter the result and reformat it

• Import disease pathway data directly from the KEGG
database

• Visualize pathway data in Cytoscape

• Embed the result as an interactive network diagram in the
Jupyter Notebook

This workflow is simple to do with Cytoscape – the alternative
would be a custom program or manual, file based operations that
are hard to reproduce. With this workflow script, collaborators or
reviewers can easily execute the same process on their environment,
which is essential for reproducible scientific research.

R examples
For network analysis and visualization, igraph is an important
and much used package by R users, and our sample R workflows
(https://github.com/idekerlab/cy-rest-R) use it to complement the
graph analysis features in Cytoscape.

In our Workflow 1 example, we scripted typical network visualiza-
tion techniques using igraph’s graph analysis functions and Cyto-
scape’s data visualization features. First, we used igraph to detect
community structure using a fast greedy modularity optimization
algorithm33, and we calculated basic statistics of the network,
including PageRank34 and betweenness centrality35. Our R code
calls Cytoscape to create the resulting network, set properties for
both layout and visual mapping, and generate an interactive net-
work visualization. Output of this workflow helps users to visually
understand the basic structure of the network (see Figure 3, which
shows community structures color coded and used as weights for
the Kamada-Kawai layout algorithm36).

In many cases, users apply an automatic layout algorithm early in a
workflow to visually check the overall structure of a network. How-
ever, such layouts are often based on a simple force simulation and
tend to produce uninformative “hairballs.” Our example illuminated
network sub structures by using a community detection algorithm
and igraph’s statistical analysis algorithms and visual styling. The
alternative would be manual operation of both R and Cytoscape,
which is laborious and error prone even for proficient users, and
which is not reusable for subsequent networks.

Future development
In this paper, we demonstrated Python- and R-based workflow exam-
ples. In the near future, we expect to demonstrate cyREST usage
in MATLAB and JavaScript (via Node.js38). While the cyREST
and Command apps implement different automation features,
we expect to unify the two APIs through a common implementa-
tion library in the Cytoscape core in the next Cytoscape release.
Existing Cytoscape implementations manage a single Cytoscape

Page 7 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://nbviewer.ipython.org/github/idekerlab/py2cytoscape/blob/develop/examples/New_wrapper_api_sample.ipynb
http://nbviewer.ipython.org/github/idekerlab/py2cytoscape/blob/develop/examples/New_wrapper_api_sample.ipynb
https://github.com/idekerlab/cy-rest-python
http://nbviewer.ipython.org/
https://github.com/idekerlab/cy-rest-R

Figure 3. Yeast network37 visualization with sample R script and Cytoscape.

session on behalf of a single user, can produce screen visualiza-
tions, and can potentially solicit user input even while under the
control of cyREST. Future versions of Cytoscape will run head-
lessly and service multiple sessions simultaneously.

Summary
Cytoscape is a highly popular desktop application for network
biology analysis, visualization, and publication. The cyREST app

extends Cytoscape into the realm of reproducible and high volume
bioinformatic workflows by exposing a RESTful API that recasts
Cytoscape as a visualization and rendering microservice. Using
cyREST, data acquisition and analysis workflows previously limited
to low quality (if any) visualizations can now leverage Cytoscape’s
substantial library of network layouts, visualization features, and
rendering options. Similarly, cyREST’s seamless integration with
research and publication tools such as IPython/Jupyter Notebook

Page 8 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

improves individual researcher productivity by avoiding the need to
manually operate Cytoscape.

Because it presents a RESTful interface, cyREST benefits can
be realized in workflows built in most modern programming lan-
guages, and represents a significant contribution to productivity and
reproducibility in data driven biology.

Software availability
CyREST software is available from the Cytoscape App Store:
http://apps.cytoscape.org/apps/cyrest

Latest source code of cyREST: https://github.com/idekerlab/cyREST

Full REST API v1 document: http://idekerlab.github.io/cyREST/

Py2cytoscape is in beta and is installable from PyPI repository:
https://pypi.python.org/pypi/py2cytoscape

Py2cytoscape source code: https://github.com/idekerlab/py2cyto-
scape

Python sample workflows in Jupyter Notebook format: https://
github.com/idekerlab/cy-rest-python

R sample workflows: https://github.com/idekerlab/cy-rest-R

License for cyREST, py2cytoscape, and all example workflows:
MIT: http://opensource.org/licenses/MIT

RCy3 source code: https://github.com/tmuetze/Bioconductor_
RCy3_the_new_RCytoscape

Author contributions
KO designed and implemented the software. KO and BD wrote this
manuscript. TM and GK helped design and implement the RCy3
harmonization library and sample workflows. PS supervised TM
and GK, and reviewed this manuscript. All authors have seen and
agreed to the final content of the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported with funding from the National Resource
for Network Biology (NRNB) under award numbers P41 RR031228
and GM103504 assigned to Trey Ideker.

I confirm that the funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
Some of the basic Python and R sample workflows are based on
material developed by Dr. Kazuhiro Takemoto. Some of the basic
Python workflows were written by Kozo Nishida. We incorporated
numerous valuable editorial suggestions from Dr. Christian Zmasek
and William Longabaugh into this paper.

References

1. Shannon P, Markiel A, Ozier O, et al.: Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res. 2003;
13(11): 2498–2504.
PubMed Abstract | Publisher Full Text | Free Full Text

2. Pérez F, Granger BE: IPython: a system for Interactive Scientific Computing.
Comput Sci Eng. 2007; 9(3): 21–29.
Publisher Full Text

3. Lewis J, Fowler M: Microservices. 2014.
Reference Source

4. Fielding RT, Taylor RN: Principled design of the modern web architecture. ACM
Trans Internet Technol. 2002; 2(2): 115–150.
Publisher Full Text

5. Command Tool. 2013.
Reference Source

6. Gonçalves E, Saez-Rodriguez J: Cyrface: An interface from Cytoscape to R that
provides a user interface to R packages. [v1; ref status: indexed, http://f1000r.
es/1tv]. F1000Res. 2013; 2: 192.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Gentleman RC, Carey VJ, Bates DM, et al.: Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol. 2004;
5(10): R80.
PubMed Abstract | Publisher Full Text | Free Full Text

8. ScriptingPlugins. December 2009.
Reference Source

9. RubyScriptingEngine. October 2012.
Reference Source

10. PythonScriptingEngine. October 2012.
Reference Source

11. GroovyEngine. August 2011.
Reference Source

12. ClojureEngine. August 2011.
Reference Source

13. JavaScriptEngine. August 2011.
Reference Source

14. Jones E, Oliphant T, Peterson P: {SciPy}: Open source scientific tools for
{Python}. 2001.

15. CytoscapeRPC. October 2011.
Reference Source

16. Cerami E: Web services essentials: distributed applications with XML-RPC,
SOAP, UDDI & WSDL. “O’Reilly Media, Inc.”, 2002.
Reference Source

17. Shannon PT, Grimes M, Kutlu B, et al.: RCytoscape: tools for exploratory
network analysis. BMC Bioinformatics. 2013; 14(1): 217.
PubMed Abstract | Publisher Full Text | Free Full Text

18. Json.
Reference Source

19. EMBL-EBI Web Services. April 2015.
Reference Source

20. Sletten B: Resource-Oriented Architecture: The Rest of Rest. December 2009.
Reference Source

21. Cytoscape.js.
Reference Source

Page 9 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://apps.cytoscape.org/apps/cyrest
https://github.com/idekerlab/cyREST
http://idekerlab.github.io/cyREST/
https://pypi.python.org/pypi/py2cytoscape
https://github.com/idekerlab/py2cytoscape
https://github.com/idekerlab/py2cytoscape
https://github.com/idekerlab/cy-rest-python
https://github.com/idekerlab/cy-rest-python
https://github.com/idekerlab/cy-rest-R
http://opensource.org/licenses/MIT
https://github.com/tmuetze/Bioconductor_RCy3_the_new_RCytoscape
https://github.com/tmuetze/Bioconductor_RCy3_the_new_RCytoscape
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pmc/articles/403769
http://dx.doi.org/10.1109/MCSE.2007.53
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1145/514183.514185
http://wiki.cytoscape.org/Cytoscape 3/UserManual/-Command Tool
http://f1000r.es/1tv
http://f1000r.es/1tv
http://www.ncbi.nlm.nih.gov/pubmed/24715956
http://dx.doi.org/10.12688/f1000research.2-192.v1
http://www.ncbi.nlm.nih.gov/pmc/articles/3962008
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pmc/articles/545600
http://wiki.cytoscape.org/ScriptingPlugins
http://apps.cytoscape.org/apps/rubyscriptingengine
http://apps.cytoscape.org/apps/pythonscriptingengine
http://apps.cytoscape.org/apps/groovyengine
http://apps.cytoscape.org/apps/clojureengine
http://apps.cytoscape.org/apps/javascriptengine
https://wiki.nbic.nl/index.php/CytoscapeRPC
http://spurrier.gatorglory.com/PDFs/O�Reilly - Web Services Essentials.pdf
http://www.ncbi.nlm.nih.gov/pubmed/23837656
http://dx.doi.org/10.1186/1471-2105-14-217
http://www.ncbi.nlm.nih.gov/pmc/articles/3751905
http://www.json.org
http://www.ebi.ac.uk/Tools/webservices
http://www.infoq.com/articles/roa-rest-of-rest
http://js.cytoscape.org/

22. Apache CXF.
Reference Source

23. Csardi G, Nepusz T: The igraph software package for complex network
research. InterJournal, Complex Systems. 2005; 1695(5): 1–9.
Reference Source

24. AA Hagberg, Schult DA, Swart P: Exploring Network Structure, Dynamics,
and Function using NetworkX. In Proceedings of the 7th Python in Science
Conferences (SciPy 2008). 2008; 2008: 11–16.
Reference Source

25. graph-tool: Efficient network analysis.
Reference Source

26. Jupyter.
Reference Source

27. The R Project for Statistical Computing.
Reference Source

28. graph.
Reference Source

29. RBGL.
Reference Source

30. McKinney W: pandas: a Python data analysis library. 2015.
Reference Source

31. McKinney W: Python for data analysis: Data wrangling with Pandas, NumPy,

and IPython. “ O’Reilly Media, Inc.”, 2012.
Reference Source

32. Kawashima S, Katayama T, Sato Y, et al.: KEGG API A web service using SOAP/
WSDL to access the KEGG system. Genome Informatics. 2003; 14: 673–674.
Reference Source

33. Clauset A, Newman MEJ, Moore C: Finding community structure in very large
networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2004; 70(6 Pt 2): 66111.
PubMed Abstract | Publisher Full Text

34. Page L, Brin S, Motwani R, et al.: The PageRank Citation Ranking: Bringing
Order to the Web. 1999.
Reference Source

35. Freeman LC: Centrality in social networks conceptual clarification. Social
Networks. 1978–1979; 1(3): 215–239.
Publisher Full Text

36. Kamada T, Kawai S: An algorithm for drawing general undirected graphs. Inf
Process Lett. 1989; 31(1): 7–15.
Publisher Full Text

37. Lee TI, Rinaldi NJ, Robert F, et al.: Transcriptional regulatory networks in
Saccharomyces cerevisiae. Science. 2002; 298(5594): 799–804.
Pubmed Abstract | Publisher Full Text

38. Tilkov S, Vinoski S: Node.js: Using Javascript to Build High-Performance
Network Programs. IEEE Internet Computing. 2010; 6: 80–83.
Publisher Full Text

Page 10 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://cxf.apache.org/docs/jax-rs.html
http://www.necsi.edu/events/iccs6/papers/c1602a3c126ba822d0bc4293371c.pdf
http://math.lanl.gov/~hagberg/Papers/hagberg-2008-exploring.pdf
http://graph-tool.skewed.de/
https://jupyter.org/
http://www.rproject.org/
http://www.bioconductor.org/packages/release/bioc/html/graph.html
http://www.bioconductor.org/packages/release/bioc/html/RBGL.html
http://pandas.pydata.org
http://www.citeulike.org/user/tnhh/article/11846316
https://www.jsbi.org/pdfs/journal1/GIW03/GIW03P172.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15697438
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=917C50A145BC52B389D6B484D798B2FF?doi=10.1.1.31.1768&rep=rep1&type=pdf
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1016/0020-0190(89)90102-6
http://www.ncbi.nlm.nih.gov/pubmed/12399584
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1109/MIC.2010.145

F1000Research

1.

2.

3.

1.

2.

Open Peer Review

 Current Referee Status:

Version 1

 20 August 2015Referee Report

doi:10.5256/f1000research.7270.r9846

 Guanming Wu
Ontario Institute for Cancer Research, Toronto, ON, Canada

The authors describe a Cytoscape app, CyREST, which exposes core Cytoscape functions as REST
APIs for external software components to process network related data sets in automatic and
reproducible workflows built using almost any programming languages. Users of workflows can visualize
network data in Cytoscape via its powerful visualization features. The accompanied harmonization
libraries for Python and R make the use of CyREST much easier and simpler. The manuscript is well
organized, and the described app should be highly valuable for users working with big data related to
networks for analysis and visualization.

Minor comments:

Figure 1: The difference between R/Bioconductor and Python is not clear to me. The
double-arrowed line for Python is longer than R/Bioconductor, but I am not sure what extra is
covered by Python. Python is a full-fledged programming language and capable for anything.
Should some specific packages listed for Python? Further, probably the line for Cytoscape should
be extended to cover two boxes for Curated Data Sets and Publications.

Figure 2: Will it be better to call “Network (REST protocol)” just as “REST Protocol” to avoid
confusing with other uses of "network" in the manuscript?

What is the development status of RCy3? It will be nicer to indicate its status somewhere. From the
manuscript, it seems that this is still in work-in-progress?

Typos:

In abstract: e.g. Python , JavaScript, and C#and R

There are several typos in this page: , e.g. , https://github.com/idekerlab/cy-rest-R Cytoscaep

, etc.Lesons

#springMessage("enum.${enum.class.simpleName}.${enum.name()}$!{suffix}")

 No competing interests were disclosed.Competing Interests:

 10 August 2015Referee Report

doi:10.5256/f1000research.7270.r9848

Page 11 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://dx.doi.org/10.5256/f1000research.7270.r9846
https://github.com/idekerlab/cy-rest-R,%20e.g
http://dx.doi.org/10.5256/f1000research.7270.r9848

F1000Research

doi:10.5256/f1000research.7270.r9848

 Sergey Nepomnyachiy
Department of Computer Science & Engineering, Polytechnic Institute of New York University, Brooklyn,
NY, USA

The authors present a Cytoscape app that turns it into a REST server. Most core functionality of
Cytoscape can now be triggered by external agents using HTTP requests, rather than by
point-and-clicking UI. This enables workflow automation and distribution that was hardly possible
before. The fact that the protocol is HTTP based, allows working with it programmatically using any
modern language. CyREST comes with libraries for Python and R that make the communication with
Cytoscape through REST API even simpler, by enveloping the calls in methods and wrapping the
returning JSON in objects.

Perhaps in the future work section the authors could shed some light on the plans to allow users
extending the set of REST handlers. The virtues of Cytsocape are beyond the core functionality and
currently there is no way for a Cyto-app developer to map her own functions to REST (those are
hard-wired in the code of CyREST app). A simple registry for binding 3rd party Cyto-app functions to
URLs at runtime could bring the community to bring their on plug-in REST.

Possible typos

page 6:
The default HTTP port for cyREST is 1234, which can be changed by creating or the Cytoscapemodify
rest.port property

page 7:
This workflow is simple to do with Cytoscape – the alternative would be a custom program or manual,

 that are hard to reproduce.file based operations

#springMessage("enum.${enum.class.simpleName}.${enum.name()}$!{suffix}")

 No competing interests were disclosed.Competing Interests:

Page 12 of 12

F1000Research 2015, 4:478 Last updated: 04 DEC 2015

http://dx.doi.org/10.5256/f1000research.7270.r9848

