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The Drosophila defense against pathogens largely relies on the
activation of two signaling pathways: immune deficiency (IMD)
and Toll. The IMD pathway is triggered mainly by Gram-negative
bacteria, whereas the Toll pathway responds predominantly to
Gram-positive bacteria and fungi. The activation of these path-
ways leads to the rapid induction of numerous NF-κB–induced
immune response genes, including antimicrobial peptide genes.
The IMD pathway shows significant similarities with the TNF re-
ceptor pathway. Recent evidence indicates that the IMD pathway
is also activated in response to various noninfectious stimuli (i.e.,
inflammatory-like reactions). To gain a better understanding of
the molecular machinery underlying the pleiotropic functions of
this pathway, we first performed a comprehensive proteomics
analysis to identify the proteins interacting with the 11 canonical
members of the pathway initially identified by genetic studies. We
identified 369 interacting proteins (corresponding to 291 genes)
in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92%
of which have human orthologs. A comparative analysis of gene
ontology from fly or human gene annotation databases points
to four significant common categories: (i) the NuA4, nucleosome
acetyltransferase of H4, histone acetyltransferase complex, (ii) the
switching defective/sucrose nonfermenting-type chromatin remod-
eling complex, (iii) transcription coactivator activity, and (iv) trans-
lation factor activity. Here we demonstrate that sumoylation of the
IκB kinase homolog immune response-deficient 5 plays an impor-
tant role in the induction of antimicrobial peptide genes through a
highly conserved sumoylation consensus site during bacterial chal-
lenge. Taken together, the proteomics data presented here provide
a unique avenue for a comparative functional analysis of proteins
involved in innate immune reactions in flies and mammals.
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Innate immune responses are common among metazoans, and it
is now understood that the basic molecular machineries of these

responses evolved early in evolution and have been well conserved.
The model organism Drosophila has provided significant in-

sights into these defenses. A hallmark of innate immunity in the
fly is the challenge-induced production of several families of dis-
tinct, mostly small-sized membrane active peptides/polypeptides
with various activity spectra directed against bacteria and fungi.
This production is dependent on two intracellular signaling cas-
cades that control the expression of antimicrobial peptide genes
(and of hundreds of other immune response genes) via members
of the NF-κB family of inducible transactivators (1): (i) The Toll
pathway, which is predominantly activated during fungal and
Gram-positive bacterial infections, and (ii) the immune deficiency
(IMD) pathway, which was initially identified by its role in the
defense against Gram-negative bacteria. However, it has become

apparent that this pathway, which shares significant similarities
with the mammalian TNF receptor pathway (1), can also be ac-
tivated by noninfectious stimuli (i.e., inflammatory-like reactions).
Indeed, Mukae et al. and our group (2, 3) revealed that flies car-
rying a hypomorphic mutation in the DNaseII (DNaseIIlo) consti-
tutively expressed the IMD-dependent Attacin A, but not the Toll-
dependent Drosomycin gene.
To date, forward genetic and genome-wide RNA interference

(RNAi) screens have identified 11 canonical molecules in the
IMD pathway reviewed in ref. 4. In short, during activation of this
pathway, the bacteria sensors peptidoglycan recognition protein
(PGRP)-LC (transmembrane type) and/or PGRP-LE (intracel-
lular type) recruit the adaptor molecule IMD (which shows some
degree of similarity to mammalian receptor interacting protein 1)
to form a complex with Fas-associated death domain (FADD) and
death-related ced-3/neural precursor cell expressed developmen-
tally downregulated 2 (NEDD2)-like protein (DREDD; equivalent
to mammalian caspase 8/10); this leads to the activation of the mi-
togen-activated protein 3 (MAP3) kinase TGF β-activated kinase
1 (TAK1) and eventually to that of the IκB kinase (IKK) complex,
IKKβ/immune response-deficient 5 (IRD5) and IKKγ/Kenney
(KEY). This complex subsequently activates the NF-κB family
member Relish (Rel), which is cleaved by the caspase DREDD,
allowing for nuclear translocation of the Rel homology domain.
This simplified scheme, however, leaves many questions un-

answered. We reasoned that to get a better understanding of
the IMD pathway, additional information was required about
the protein complexes formed between and around the canonical
pathway members. For this, we undertook a pathway-wide and
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time-lapse proteomics approach aimed at identifying all interacting
proteins in S2 cells challenged by heat-killed Escherichia coli. This
approach led us to identify 369 interacting proteins, corresponding
to 291 genes. Knockdown experiments of the corresponding genes
by RNAi indicates that approximately half of the genes affect the
induction of antimicrobial peptide reporter genes following bac-
terial challenge in S2 cells. This dataset will provide the basis for
an in-depth analysis of the molecular events underlying the roles
of the IMD pathway in host reaction to microbial challenge or to
noninfectious stimuli, illustrated below in one example where we

unexpectedly noted that IκB kinase homolog IRD5 is sumoylated
at a site highly conserved between Drosophila and mammals, and
that this sumoylation is required for the induction of the antimi-
crobial peptide attacin A in response to bacterial challenge.

Results
Pathway-Wide and Time-Lapse Functional Proteomics Analysis. The
following 11 proteins were chosen as baits because they have
previously shown to be involved in the activation of the IMD
pathway: PGRP-LC, PGRP-LE, IMD, BG4 [Drosophila FADD
(dFADD)],DREDD,TAK1,TGF-β–activated kinase 1/MAP3K7
binding protein 2 (TAB2), inhibitor of apoptosis protein 2 (IAP2),
IRD5 (DmIKKβ), KEY (DmIKKγ), and Relish (4). Each protein
was fused N terminally or C terminally with a biotin tag and was
stably expressed in S2 cells previously subjected to stable in-
tegration of the bacterial enzyme BirA to allow for biotinylation
of the tags. In total, we established 22 stable transformant cell
lines (11 genes × two tag locations), which were individually
stimulated by heat-killed E. coli before harvest at four different
time points (t = 0 min, 10 min, 2 h, and 8 h; Fig. 1A). This pro-
cedure was followed by streptavidin-mediated affinity purification
of 96 bait–protein complexes (22 transformants× four time points,
plus eight unstimulated controls without baits), on-bead trypsin
digestions of the protein complexes, and liquid chromatography
(LC)–MS/MS analysis (5). We identified 369 proteins, and their
corresponding 291 genes are visualized as the IMD pathway
interactome in the open-source Cytoscape platform (6) (Fig. 1A
and Dataset S1). Each bait–protein complex, merged from both
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Fig. 1. Overview of the functional proteomics analysis of the IMD pathway.
(A) Work flow of the experiment. Light green nodes represent the bait pro-
teins. The size of nodes is in relation to the numbers of interactants. (B) Number
of identified proteins per bait. Black columns indicate the numbers of proteins
found at all time points, and white columns indicate those found at some time
points only. (C–G) Fold-change of numbers of identified proteins over time in
each bait. Numbers of identified proteins at 0 min is considered the base.
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Fig. 2. Functional clusters common between humans and flies and their asso-
ciated genes. GO terms of cellular components (A), biological processes (B), and
molecular functions (C) shared between human and fly annotation databases
are shown. Black and gray bars indicate fold-enrichment values for humans and
flies, respectively. Four major parental GO terms are indicated with an asterisk.
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N- and C-terminal tags, contained an average of 112 proteins with
values ranging from 43 for DREDD to 169 for IRD5/IKKβ (Fig.
1C). Interestingly, 269 of the 291 proteins identified in this inter-
actome have human orthologs (Dataset S2). More than half of the
proteins were identified only after bacterial challenge of the cells.
The number of identified proteins also changed over time
depending on the bait protein (Fig. 1 C–G). We tested the po-
tential relevance of the 214 genes in the IMD pathway by two
independent RNAi-mediated gene knockdown assays (SI Mate-
rials andMethods) and a total of 102 genes (47%) altered reporter
gene activities in cells following Gram-negative bacterial chal-
lenge. As shown in Fig. S1, our results on some of the interactants
and protein–protein interactions are in agreement with those
found in the comprehensive Drosophila Interaction Database,
which contains all previously known protein–protein and genetic
interactions (7). For instance, both sets show that IMD, FADD,
and DREDD form a complex, and that IRD5 and KEY are as-
sociated. In addition, several proteins identified previously in the
context of studies on the IMD pathway were also identified in this
study: KAY (Kayak), PVR (PDGF- andVEGF-receptor related),
MASK (multiple ankyrin repeats single KH domain), αTUB84B
(α-Tubulin at 84B), CG6509, CG4849, IntS1(Integrator 1), RPL22
(Ribosomal protein L22), OST48(Oligosaccharyltransferase 48kD
subunit), EIF-2α (eukaryotic translation Initiation Factor 2α),
αTUB84D (α-Tubulin at 84D), MESR4 (Misexpression suppres-
sor of ras 4), AGO2(Argonaute 2), SCAR (suppressor of cAMP
receptors), RpS27 (Ribosomal protein S27), MED14 (Mediator
complex subunit 14), and SKPA (Skp1-related gene A) (8–11). Of
note, the precise functions of these proteins in the IMD-dependent
immune response remain largely unknown. In contrast, we were
unable to identify some proteins reported recently to act as negative
regulators of the IMD pathway—namely, CASP (Casper), POSH
(Plenty of SH3s), DNR1 (defense repressor 1), and PIRK [poor
Imd response upon knock-in; also known as RUDRA or PIMS
(PGRP-LC-interacting inhibitor of Imd signaling)]. As reported
recently by Lhocine et al. (12), PGRP-LCx and PIMS can become
insoluble in Triton X-100 lysis conditions. Because we used Triton
X-100–soluble fractions, this could be one explanation as to why
some interacting proteins present in the insoluble fractions are
absent from our analysis.

Possible NuA Histone Acetyltransferase and Chromatin Remodeling
Functions in the Activation of the IMD Pathway. We next performed
gene ontology (GO) analysis using Database for Annotation,
Visualization and Integrated Discovery (DAVID) Bioinformatics
Resources (13). Comparison of GO terms from fly or human
gene annotation databases point to four major shared GO terms:
(i) histone acetyltransferase complex (GO:0000123), in particular
the NuA histone acetyltransferase complex subgroup, (ii) chro-
matin remodeling complex (GO:0016585), in particular the SWI/
SNF-type complex subgroup, (iii) transcription coactivator ac-
tivity binding (GO:0003713), and (iv) translation factor activity
(GO:0008135; Fig. 2). Of particular interest, pontin [PONT; human
ortholog RuvB-like 1 (Ruvbl1)], reptin [REPT; human ortholog
RuvB-like 2 (Ruvbl2)], and domino [DOM; human ortholog Snf2-
related CREBBP activator protein/p400 (Srcap)] are shared among
the histone acetyltransferase complex and chromatin remodeling
complex GO term groups. RNAi-mediated depletion of pontin,
reptin, or domino showed a marked reduction of NF-κB reporter
activity in S2 cells after heat-killed E. coli stimulation (Dataset S3).
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Ontology term enrichment in molecular function in the IMD interactome
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PONT and REPT belong to the AAA+ (ATPase associated with
diverse cellular activities) family of ATPases and are part of chro-
matin remodeling complexes (14). Recent studies have implicated
these molecules in various cellular processes, including transcrip-
tion, DNA damage response, small nucleolar RNA (snoRNA) as-
sembly, and cancer metastasis (15). Our data indicate that PONT
and REPT are constitutively present in the IKK complex.
InDrosophila, DOM is a SWI2/SNF2 class chromatin-remodeling

ATPase and has a role in the exchange between the phosphorylated
and unphosphorylated forms of the H2Av histone variant in nu-
cleosomal arrays during DNA damage (16). H2AX, the mammalian
equivalent of Drosophila H2Av, can be acetylated by TIP60 (the
catalytic subunit of NuA4-type HAT complex) before H2A ex-
change by DOM; H2AX is subsequently polyubiquitinated by
UBC13, an E2 ubiquitin-conjugating enzyme (17). Interestingly, in
our dataset, DOM is associated only transiently at 2 h with IAP2,
a protein with ubiquitin E3 ligase activity. Of note, in mammals the
precise mechanism of NuA4 (TIP60) HAT complex-mediated ac-
tivation of NF-κB during bacterial challenge is still not understood.

Small Ubiquitin-Like Modifier Modification of the IKK Complex. Pending
an in-depth analysis of the precise functions of the various inter-
actants found in this study, we chose to focus here on the relevance
of the molecular function GO term “SUMO binding” in Fig. 3A.
Indeed, we observed that small ubiquitin-like modifier (SUMO)
proteins are associated with IRD5 (IKKβ) and KEY (IKKγ) in the
Drosophila IKK complex. To examine the role of sumoylation in
IMD signaling, we addressed a well-characterized loss-of-function
missense mutant of the lesswright (lwr; alternatively, DmUbc9)
gene, in which an Arg is changed to a His at position 104 of the
E2 SUMO conjugation enzyme DmUBC9; UBC9 facilitates the
addition of the SUMO protein (SMT3) to proteins in Drosophila.
Because the homozygous lwr mutants are lethal (18), we infected
heterozygote lwr flies with live E. coli and noted that these flies
succumbed to infection (Fig. 3B). Consistently, bacterial growth in
heterozygote lwr flies was drastically increased compared with
wild-type at day 10 postinfection (Fig. 3C). Furthermore, the ex-
pression of the antibacterial peptide gene Attacin A, one of the
representative target genes of NF-κB in the IMD pathway, was
significantly reduced in heterozygote lwr flies (Fig. 3D). These
results reveal that sumoylation plays an important role in IMD-
dependent immune responses against bacteria. Sumoylation is a
posttranslational protein modification that contributes to many
facets of the functional regulation of proteins, such as kinase activity,
subcellular localization, and protein–DNA binding (19). We
next stably expressed HA-tagged IRD5 and KEY, together with
polyhistidine-tagged SMT3, and performed affinity purification of
sumoylated proteins in denaturing conditions followed by immu-
noblot using anti-HA antibodies. We found that IRD5 is sumoy-
lated, but not KEY (Fig. 3E). Using our experimental conditions, we
observed that the majority of IRD5 is monosumoylated (Fig. S2).

K152 Is a Functional Sumoylation Site. Amino acid sequence align-
ment of the IRD5 homologs of 12 Drosophila species and several
mammalian species followed by prediction of sumoylation sites
using Web-based bioinformatics software SUMOsp 2.0 (http://
sumosp.biocuckoo.org) led us to identify a putative sumoylation
motif Ψ-K-x-D/E around K152. Of the four potential sumoylation
sites of IRD5, the K152 motif is conserved among all Drosophila
species and in many vertebrate species; this motif is shared with
the IKK family member IKKα in mammals (Fig. 4A). Note that
Drosophila IK2, and its mammalian orthologs TBK1 and IKKe,
do not have this lysine residue, although the sequence in this
region is well conserved (Fig. S3). As shown in 3D structural
analysis by Xu et al. (20), the K152 residue is located in the loop
between two β-strands, β6 and β7 (Fig. 4B). We next investigated
whether the sumoylation consensus sequence in IRD5 is indeed
sumoylated, and, if so, what functional relevance it would assert
in NF-κB activation. For this, we used Drosophila cell lines stably

expressing polyhistidine-tagged SMT3 and either HA-tagged
WT or mutated (K152A) IRD5. Cells were stimulated with heat-
killed E. coli, and proteins were extracted followed by immuno-
precipitation and immunoblotting. Fig. 4 C and D show that WT
IRD5 is increasingly sumoylated over time; sumoylation of the
mutated form (K152A) remains at the level of unstimulated cells.
We next analyzed the relevance of K152 sumoylation of IRD5 on
NF-κB activation. For this, we knocked down ird5 by RNAi and
observed that the level of induction of the reporter gene was
lowered by 50% compared with controls. We then transfected the
ird5 knockdown cells with one of the three following IRD5 con-
structs: (i) WT, (ii) the SUMO-mutant form (K152A), or (iii)
the kinase-dead form (K50A) (21). Significantly, only WT IRD5
could restore the loss of reporter gene expression observed in the
ird5 knockdown cells (Fig. 4E). The expression of different forms
of ird5 did not alter the level of induction (Fig. S4). Furthermore,
we established ird5 transgenic fly lines expressing either WT or
K152A in an ird5-deficient background. Six hours after injecting
Gram-negative bacteria into these flies, we observed that only the
WT construct could support the induction of endogenous Atta-
cin A in contrast to K152A (Fig. 4F). These data indicate that
K152 sumoylation of IRD5 plays a pivotal role in NF-κB activa-
tion in vivo and in vitro.

Discussion
Our studies on the IMD interactome revealed multiple potential
regulators of IMD pathway activation. IRD5 sumoylation is one
method of regulation. In support of this, another SUMO-related
molecule, VELOREN, exists in our IMD interactome dataset.
VELOREN is the Drosophila ortholog of mammalian sentrin-
specific protease 6 (SENP6), which functions for desumoylation
(22). It still remains to be understood why IRD5 needs to be
sumoylated upon bacterial challenge. It is well accepted that
mammalian IKKβ functions as a regulator of NF-κB activation.
However, there is an interesting observation that during UV ir-
radiation, NF-κB can be activated by IκBα degradation without
IKKβ-mediated phosphorylation (23, 24). Recently, Tsuchiya
et al. (25) revealed that nuclear IKKβ is an adaptor protein for
IκBα ubiquitination and degradation. It will be interesting to in-
vestigate whether K152 sumoylation of IKKβ is also important for
the function of mammalian IKKβ and, if so, in what circumstances
IKKβ sumoylation is required for activation of NF-κB.
Our interactome dataset contains ribosomal protein S3 (RPS3).

Wan et al. (26) identified RPS3, a KH domain protein, as a non-
Rel subunit that associates with the Rel protein p65 to regulate key
genes in rapid cellular activation responses. Furthermore, Sen
et al. (27) recently revealed that sulfhydration of p65 at a conserved
cysteine 38 is important for association with the coactivator RPS3,
DNA binding, and antiapoptotic gene expression. Interestingly, the
food-borne pathogen E. coli strain O157:H7 has acquired a mech-
anism that enables it to specifically inhibit phosphorylation of
RPS3 Ser209, subsequently blocking RPS3 function; phosphory-
lation promotes nuclear localization of RPS3 upon a lymphocyte-
activating stimulus (28).
We also identified cindr, the Drosophila ortholog of CIN85 and

CD2AP. CINDR has three SH3 domains and positively regulates
receptor-mediated endocytosis (29). Kometani et al. (30) dem-
onstrated that CIN85 functions upstream of IKKβ in the activa-
tion of NF-κB in B cells and is responsible for T-cell–independent
type II antibody responses in vivo.
Of further interest are chromatin remodeling and histone

acetyltransferase activities linked to the activation of the IMD
pathway. Chromatin remodeling complexes are classified into four
distinct families (14): switching defective/sucrose nonfermenting
(SWI/SNF); imitation switch (ISWI); chromodomain, helicase,
DNA binding (CHD); and inositol requiring 80 (INO80). Our
interactome dataset contains SWI/SNF and INO80 family mem-
bers. In the SWI/SNF family, we identified most of the compo-
nents of the SWI/SNF remodeler complex, such as MOR (human
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BAF155, BAF170), BAP60 (human BAF60 a, b, or c), SNR1
(human SNF5/BAF47/INI1), BAP55 (human BAF53a or b), and
ACTIN (human β-actin). This family has multiple activities, in-
cluding the sliding and ejecting of nucleosomes. Limpert et al. (31)
reported that BRG1, the core helicase of the mammalian SWI/
SNF remodeling complex, is required for Schwann cells to dif-
ferentiate and to form myelin through a complex with NF-κB.
In the INO80 family, we found DOMINO (human SRCAP),
REPTIN (human Ruvbl1), PONTIN (human RuvBl2), BAP55
(human BAF53a), ACTIN 87E (human actin), DMAP1 (human
DMAP1), and MRG15 (human MRG15 or MRGX) categorized
into a Tip60-type complex. This complex has diverse functions.
For example, the SWR1 (Swi2/SNF-related 1, the yeast complex
equivalent to Drosophila Tip60) complex can replace the canoni-
cal H2A–H2B histone dimers with variant H2A.Z–H2B dimers,
subsequently altering nucleosome structure to regulate tran-
scription and DNA repair. Drosophila domino mutants show
developmental defects in their blood cells (i.e., hemocytes) (32).
Similarly, mDomino (alternatively, Ep400) knockout mice show
defects in embryonic and adult bone marrow hematopoiesis (33,
34). Recently, Arnold et al. (35) isolated a mouse Ruvbl2 mutant
named Worker. Worker heterozygous mutants show a delay in
T-dependent humoral immune responses together with a defect in
T-cell development (35). It will be important to reveal how the
Tip60 complex regulates NF-κB activation, in addition to its roles
in hematopoietic cell development (35).
We anticipate that the data provided above will serve as a basis

for further in-depth analyses of the highly conserved regulatory
network of the IMD pathway. The roles of many of the in-
teractant proteins presented in the figures have remained elusive
to date, and their functions will have to be established both in the
antimicrobial defense and in the inflammatory-like reactions such
as those noted in DNaseII-deficient flies (2, 3).
In conclusion, unexpectedly large numbers of proteins that

associate with the IMD interactome were identified in our study.
Interestingly, over 90% of these proteins have human orthologs.

We cannot firmly exclude that some of the 300 interactants could
result from accidental protein–protein interactions. However, in
the RNAi knockdown results, close to 50% of the interactants
have a phenotype by simply looking at the expression of Attacin A;
we are confident that most of the data in this study present
functional interactions. With this large data set, it is reasonable to
expect that understanding precise functions of molecules identi-
fied in this study will provide more insights into defense reactions
and provide beneficial targets for fighting human diseases.

Materials and Methods
Eleven genes in the Drosophila IMD pathway, PGRP-LCx, PGRP-LE, imd,
FADD, Dredd, Iap2, Tab2, Tak, key, ird5, and Rel, were chosen for functional
proteomics. Individual genes were N- or C-tagged with a biotin tag and
stably expressed in BirA-expressing Drosophila S2 cells (Fig. S5). Cells of each
clone were harvested at four different time points (t = 0 min, 10 min, 2 h,
and 8 h). The protein complex was affinity purified from the supernatant of
each lysate and on-bead tryptic digested. Peptides were purified on a capil-
lary reverse-phase column, and the MS analysis was performed on a Fourier
transform ion cyclotron resonance (FT-ICR) mass spectrometer (LTQ-FT Ultra;
ThermoFisher Scientific), followed by MS/MS (linear trap quadrupole). Pro-
teome Discoverer 1.3 (ThermoFisher Scientific) and Mascot were used to
search the data and filter the results. Protein–protein interactions were
visualized by Cytoscape open-source software. The DAVID version 6.7 was
used for our GO studies. Statistical analysis was performed using GraphPad
Prism software. All primers used in this study are listed in Dataset S4. Extended
materials and methods can be found in SI Materials and Methods.
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