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Using an integrated genomic and proteomic approach, we
have investigated the effects of carbon source perturba-
tion on steady-state gene expression in the yeast Saccha-
romyces cerevisiae growing on either galactose or etha-
nol. For many genes, significant differences between the
abundance ratio of the messenger RNA transcript and the
corresponding protein product were observed. Insights
into the perturbative effects on genes involved in respira-
tion, energy generation, and protein synthesis were ob-
tained that would not have been apparent from measure-
ments made at either the messenger RNA or protein level
alone, illustrating the power of integrating different types
of data obtained from the same sample for the compre-
hensive characterization of biological systems and
processes. Molecular & Cellular Proteomics 1:323–333,
2002.

The concept of discovery science, best illustrated by the
human genome project (1, 2), involves the identification of the
components of a system without the prior formulation of
hypotheses as to how these components function (3). This
scientific method has spawned what has become known as
the “systems” approach to biology, which involves the com-
prehensive characterization of the components of a biological
system (i.e. DNA, RNA, and proteins) as a whole, leading to
insights into the responses of these components because of
systematic perturbations to the system. The objective of the
systems biology approach is to identify markers and mecha-
nisms that are important to the function of the perturbed
system, with the ultimate goal of developing computational
models that enable the prediction of the response of the
system to any given perturbation.

Traditionally, studies measuring the effects of systematic
perturbations have been carried out at the level of transcribed
mRNA, most commonly using cDNA arrays and chip technol-
ogies (4–7), or alternative methods for mRNA analysis such as
serial analysis of gene expression (8), differential display (9),
and cDNA fingerprinting (10). These technologies have been

used to distinguish diagnostically between cell types (7, 11–
15) and to differentiate between states (metabolic, activation,
pathological) of a particular cell type (6, 16), as well as for the
comprehensive analysis of cellular pathways and processes
by targeted perturbations of cells (16–19).

Although the measurement of transcribed mRNA has
proven to be very powerful in the discovery of molecular
markers and the elucidation of functional mechanisms, alone
it is not sufficient for the characterization of biological systems
as a whole. This is based on several observations. First,
comparison of absolute mRNA transcript abundances meas-
ured by serial analysis of gene expression (8) with the corre-
sponding protein abundances expressed in exponentially
growing Saccharomyces cerevisiae cells has shown that in
many cases mRNA abundance is not a reliable indicator of
corresponding protein abundance (20), and studies in other
systems have reached similar conclusions (21, 22). Further-
more, attenuation of protein abundance because of post-
transcriptional control of protein translation (23) and protein
modifications (24) cannot be predicted currently from meas-
urement of mRNA abundance. Neither does the mRNA se-
quence nor abundance predict accurately the subcellular lo-
cation of expressed proteins, their associations with each
other or and/or other biomolecules, or the mechanisms of
protein half-life control.

In contrast to the studies discussed above that have inves-
tigated the correlation between absolute amounts of tran-
scribed mRNA and protein, the aim of this study was to
investigate the correlation of induced changes in mRNA and
protein expression. To this end, we have applied the isotope-
coded affinity tag (ICAT1; Applied Biosystems, Foster City,
CA) reagent technology (25) to the quantitative analysis of
steady-state protein expression in S. cerevisiae grown on the
two carbon sources, galactose and ethanol; we have also
measured the relative abundance of the corresponding mRNA
transcripts by cDNA microarray analysis (4). Our results indi-
cate that for many genes the measurement of mRNA re-
sponse is not predictive of the protein response. Conse-
quently, these different types of data provide complementary
information to the elucidation of mechanisms of control thatFrom the Institute for Systems Biology, Seattle, Washington 98103
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would not be evident from information obtained at only a
single level of gene expression. This validates a central idea to
the systems approach to biology that it is only through the
integration of different levels of information that the system
can be described comprehensively.

EXPERIMENTAL PROCEDURES

Preparation of mRNA and Protein—Proteins and mRNA were har-
vested from the yeast strain YPH499 (MATa, ura3–52, lys2–801,
ade2–101, leu2–1, his3–200, trp1–63). mRNA and proteins were iso-
lated from separate yeast cultures grown under the same conditions.
Starter cultures were first grown in YP-rich medium containing 2%
galactose. Cells from this culture were diluted to 0.05 optical den-
sity in either the same galactose-containing medium or YP-rich
medium containing 2% ethanol and 0.05% galactose. These cul-
tures were then grown to log phase (2 � 107 cells/ml) at 30 °C.
From one set of the cultures total RNA was harvested, the poly(A)
RNA was purified, and cDNA was synthesized by reverse-transcrip-
tion as described previously (26). Protein was harvested from the
other set of cultures as described (20).

DNA Microarray Analysis—The synthesized cDNA was hybridized
to a DNA microarray containing a set of �6200 known and predicted
gene open reading frames fabricated as described (26). The hybrid-
ization fluorescence data obtained were processed automatically us-
ing a software algorithm (26).

Quantitative Protein Profiling—Quantitative protein analysis was
carried out by the ICAT (Applied Biosystems, Foster City, CA) reagent
method (25). 2.2 mg of protein isolated from cells grown on the
ethanol carbon source were labeled with the isotopically normal (d(0))
form of the ICAT reagent, and likewise 2.2 mg of protein isolated from
cells grown on the galactose carbon source were labeled with the
isotopically heavy (d(8)) form of the reagent. The samples were la-
beled, digested, and purified using a multidimensional chromatographic
approach as described previously (27). Ten of the purified, ICAT re-
agent-labeled peptide fractions were lyophilized and redissolved in
reverse phase microcapillary liquid chromatography Buffer A.

Mass Spectrometric Analysis—Fused silica microcapillary columns
(100 �M inner diameter x 12-cm) were in-house packed with Magic
C18 (5 �M, 200 Å) spherical silica (Michrom BioResources, Auburn,
CA). A flame-pulled tip (5 �M diameter) at one end of the capillaries
served a dual purpose of retaining beads and as an electrospray
ionization source. The voltage (�1.8 kV) was applied behind the
column through a gold wire into one arm of a microcross (Upchurch
Scientific, Oak Harbor, WA). The other three arms of the cross were
used as a receiver for the liquid chromatography flow (75 �l/min), a
fused-silica flow restrictor (50 �M inner diameter x 50-cm) that passed
74.5 �l/min to waste, and 500 nl/min (split ratio of 0.007) across the
packed capillary column that was connected to the ion source. The
capillary column was loaded with �20% of the total of each affinity-
purified peptide mixture offline via a pressure cell and then recon-
nected to the system. After washing for 5 min with 90% Solvent A
(0.4% acetic acid and 0.005% heptafluorobutyric acid in water) and
10% Solvent B (0.4% acetic acid, 0.005% heptafluorobutyric acid in
100% acetonitrile), a binary gradient from 10% Solvent B to 35%
Solvent B over 1 h was run using an HP1100 solvent-delivery system
(Hewlett Packard, Palo Alto, CA). Eluting peptides were analyzed
using an LCQ classic ion-trap mass spectrometer (Finnigan MAT, San
Jose, CA). The mass spectrometric strategy employed consisted of
the ion trap alternating between mass spectral scans detecting pep-
tide ion mass-to-charge ratios and tandem mass spectrometry (MS/
MS) scans in which a selected peptide ion species was subjected
to collision-induced dissociation. Each scan lasted an average of
�1.3 s. Therefore over the 1-h analysis time �1300 sequencing

attempts were carried out. The specific mass-to-charge value of each
peptide sequenced by tandem mass spectrometry was excluded
dynamically from reanalysis for 1 min (28, 29).

The obtained MS/MS spectra were automatically searched against
a data base of predicted proteins derived from the �6100 open
reading frames in the S. cerevisiae genome using the SEQUEST
algorithm (30). The cleavage specificity for the protease used was not
specified for the search, and oxidized methionines and ICAT reagent-
labeled cysteines (both the d(0) and d(8) forms) were specified as
static modifications in the search parameters. No sequence con-
straints were included in the data base search to allow for the iden-
tification of non-specifically retained, non-cysteine-containing pep-
tides, which were found to constitute less than 10% of the total
peptides identified and did not interfere with the analysis. A peptide
was considered to be a match if the cross-correlation score for a
MS/MS spectrum from a peptide ion was at least 2.0 or the �
correlation score was at least 0.1 (30). We considered a protein
identified if at least two such peptide matches were apparent for the
protein. For proteins identified by a single peptide, the veracity of
these peptide sequence determinations by SEQUEST was confirmed
by manual inspection. Several criteria were used to confirm the se-
quence matches: (i) Peptide sequences identified as containing either
d(0)- or d(8)-labeled cysteine were inspected for characteristic ICAT
reagent fragments (peak at m/z of 284 for d(0)-labeled peptides and
m/z of 288 for d(8)-labeled peptides); (ii) inspection of spectra for
matches between major product ions and the theoretically predicted
product ions from the data base-matched peptide; (iii) examination of
the chromatographic profiles of the peptides identified as d(0) and
d(8) labeled for expected behavior, as the d(8)-labeled peptides con-
sistently elute several seconds before the d(0)-labeled peptides. Only
peptides passing all of these criteria were determined to be true
sequence matches. Quantification of each identified protein was done
by reconstructing the ion-chromatographic trace for the d(0) and d(8)
form of each peptide and comparing the peak area for corresponding
peptide pairs using XPRESS, a novel quantification software routine
that enables visual inspection of reconstructed ion chromatograms
for identified peptides (31). The criteria used in determining the ac-
curacy of the quantitative results were as follows: (i) signal-to-noise
ratios of at least 10; if one of the labeled peptides (d(0) or d(8)) in a pair
was detected at a signal-to-noise ratio less than 10, the abundance
was estimated by measuring the noise level over the approximate
elution profile of that peptide; (ii) approximately Gaussian-shaped
elution profiles; (iii) clear chromatographic separation from coeluting
peptides at similar m/z ratios. The final results were summarized using
the software tool INTERACT (31). For those proteins from which
multiple peptides were identified, the log10 of the abundance ratio for
each specific pair of ICAT reagent-labeled peptides were averaged to
give an average log10 abundance ratio that was used in the final
results.

RESULTS

The correlation between induced changes in mRNA and
protein-expression profiles was varied. We investigated the
extent to which perturbation-induced changes in gene ex-
pression at the protein and mRNA levels were correlated in
yeast cells. Cells were grown on the fermentable carbon
source, galactose, and the non-fermentable carbon source,
ethanol, respectively. Carbon source utilization in yeast has
been studied in depth, with being growth on various carbon
sources known to cause large changes in gene expression (5,
32). Glucose is the preferred sugar for energy generation in
yeast, and a well characterized regulatory network results in
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the repression of a plethora of genes responsible for the
utilization of other carbon sources when glucose is present
(32, 33). Changes in mRNA levels in cells grown on the two
carbon sources galactose and ethanol were determined by
full genome cDNA arrays (4), and the obtained profiles were
subjected to maximum-likelihood analysis (26); changes in the
protein profiles were determined by the ICAT reagent method
(25). Proteins were isolated from the two cell populations,
labeled with the isotopically normal (d(0)) or heavy (d(8)) ICAT
reagent, respectively, combined, and proteolyzed. The result-
ing peptide mixtures were fractionated by strong cation ex-
change chromatography, and each fraction was subjected to
avidin affinity chromatography (27). Ten separate fractions of
purified ICAT reagent-labeled peptides were identified and
quantified using reverse phase microcapillary liquid chroma-
tography in conjunction with electrospray ionization MS/MS
analysis and specifically developed software tools (31). In
total, we identified and quantified the relative abundances of
245 unique protein products. We identified and quantified an
additional 45 peptides by this method that could not be
assigned unambiguously to a specific protein because of
sequence similarities between two or more proteins. The
quality and accuracy of the quantitative protein data gener-
ated initially by the software tool (31) was checked manually,
and only those peptides showing satisfactory signal-to-noise
ratios in the mass spectrometric analysis were incorporated
into the data set presented here. The full set of proteins
identified, the abundance ratios for these proteins, and the
abundance ratios for each corresponding mRNA transcript
are provided in Table I of the Supplemental Material. Fig. 1A
shows the abundance ratios of the uniquely identified proteins
plotted against the ratios obtained for the products of the
same genes obtained at the mRNA level. The plotted line
indicates the line y � x that would be expected if the mRNA
and protein-abundance ratios were correlated perfectly. A
non-parametric correlation analysis of the experimental data
using the Spearman rank correlation method (34) gives a
correlation coefficient of 0.21 (p � 0.001). This indicates a
positive directional correlation between the mRNA and pro-
tein-abundance ratios, although there was a relatively weak

correlation when compared with the perfectly correlated data
represented by the plotted line in Fig. 1A.

An important aspect of this comparison is an assessment of
what constitutes a significant change in abundance at either
the mRNA or protein level. For hybridization data obtained
from a cDNA microarray, a conservative abundance ratio
threshold indicating significant change in abundance in a
single experiment is at least a 3-fold change ( log10(ratio) �

0.48) (26). As the results presented here were derived from a
single microarray experiment, only transcripts showing abun-
dance changes exceeding this threshold were considered to
be expressed differentially, to account for possible measure-
ment errors in this data. This threshold has been set based on
control experiments comparing equal amounts of differently
fluorescently labeled mRNA hybridized to an array and deter-
mining the level of variation between the measured ratios and
the expected ratio of one. As the level of variation increases
for transcripts detected at low fluorescence intensities, mRNA
species detected by the analysis software at levels below the
threshold where this error model is valid were omitted from
the results (26). For protein-abundance ratios measured by
the ICAT reagent method we set a 1.5-fold change
( log10(ratio) � 0.18) as the threshold indicating significant
change. This value was chosen for the following reasons: (i)
assessment of variation over numerous experiments. In pre-
vious studies using the ICAT reagent technology to measure
abundances of control mixtures of proteins we have observed
discrepancies of 10–20% between the expected and meas-
ured values (25, 27); (ii) assessment of the variation within an
experiment. The confidence in the protein-abundance ratio
measurements within an experiment can be assessed by the
variation in abundance ratios measured from multiple pep-
tides derived from the same protein. In the study described
here approximately one-third of the proteins quantified had
two or more peptides contained in their sequence identified
and used to determine the relative abundance ratios. Table I
shows a sampling of proteins identified in which multiple
peptides from the same protein were matched to the protein
and used to determine the abundance ratio of the protein. On
average the variation between peptides for the data shown in

TABLE I
Abundance ratio variations among peptides derived from selected proteins

The number of unique, ICAT reagent-labeled peptides identified by tandem mass spectrometry is given for each protein, along with the
average ratio of abundance for the peptides on the galactose carbon source relative to the ethanol carbon source and the standard deviation
between these ratios.

Protein Description No. of peptides Gal/Eth

Cdc19 Pyruvate kinase 5 2.7 � 0.5
Gre3 Aldose reductase 3 1.8 � 0.2
Cox12 Cytochrome c oxidase 3 0.73 � 0.09
Ahp1 Alkyl hydroperoxide reductase 3 4.6 � 0.3
Yef3 Translation elongation factor EF-3A 3 2.1 � 0.4
Ald6 Cytosolic acetaldehyde dehydrogenase 5 0.87 � 0.2
Hom2 Aspartate-semialdehyde dehydrogenase 3 0.89 � 0.1
Psa1 Mannose-1-phosphate guanyltransferase 3 1.4 � 0.2
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FIG. 1. mRNA abundance ratios versus protein-abundance ratios. The log10 values of the ratio of abundance on the galactose carbon
source to the abundance on the ethanol carbon source measured at the mRNA and protein level are plotted against each other for each unique
gene product characterized in this study. A, all gene products characterized. Some of the key genes involved in carbohydrate metabolism and
energy generation are indicated. The plotted line indicates data points showing perfect correlation between mRNA and protein abundances.
B, those data points showing significant differential expression between the two carbon sources.
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Table I is �14% of the average abundance ratio determined
for the protein from the peptides, illustrating the high amount
of precision and accuracy of the ICAT reagent method for the
measurement of relative protein abundances. Similar levels of
variation between ICAT reagent-labeled peptides derived
from the same protein have been observed in another large-
scale study (31); (iii) reproducibility of the experiment. We
have reproduced the entire experiment described in this study
(i.e. cell growth, ICAT reagent labeling of proteins, mass spec-
trometry) three separate times, giving four independent sets
of data including the data set presented here. A sampling of
proteins identified in these replicate sets of experiments has
shown the ICAT reagent approach to be highly reproducible,
with a standard deviation between measurements being on
average less than 20% of the average value determined for
each of the proteins compared (35). It should be noted that in
some cases an identified peptide might exhibit large discrep-
ancies in the measured abundance ratio when compared
between separate reproducibility experiments or when com-
pared with data from other peptides derived from the same
protein within the same experiment. The vast majority of these
discrepancies occur in the case of peptides that are detected
at low signal-to-noise ratios and/or overlap in mass with other
coeluting peptides; both of these circumstances severely
confound the quantitative measurements. However, the
XPRESS software tool (31) for quantifying ICAT reagent-la-
beled peptides facilitates the inspection of the quantitative
results for identified peptides, and as such those peptides
showing poor data quality can be determined and omitted
from the final results. Accordingly, the data quality of all the
identified peptides presented in this study, and the studies
described above that assessed the variation of the ICAT rea-
gent method, was checked rigorously using the criteria de-
scribed under “Experimental Procedures,” omitting those
peptides showing poor data quality to ensure to the greatest
extent possible the accuracy of the data. Data that passes
these criteria show an average variation of 20% or less as
discussed above, with outliers showing as much as 40%
variation and as little as 1% relative to the average for a given
protein. This variation is most likely because of matrix effects
that cause slight variability in peptide ionization efficiency and
instrument detector response. Given the level of variation
observed for this data, a 1.5-fold abundance change is a
reasonable threshold value for the protein measurements. Fig.
1B shows the data points that exhibited differential expres-
sion. The rectangle indicated by the dotted line shows the
region of the plot for data points that did not exhibit significant
changes in abundance at either the mRNA or protein level
using the criteria set above. In all, 166 of the 245 unique data
points showed differential expression when measured at ei-
ther the mRNA or protein level or both.

In an earlier study we used similar metabolic perturbation in
yeast to demonstrate the ability of the ICAT reagent method to
identify and quantify proteins in complex mixtures (25). That

study differs from the present one in the growth conditions
and the time period between the induction of the perturbation
and sample harvest and the sample-processing protocol. In
the initial experiment yeast were first cultured in rich medium
containing galactose, and a portion of these cells were then
transferred to medium containing 2% ethanol. In the present
study, the cultured yeast were transferred to medium contain-
ing 2% ethanol and 0.05% galactose. The small amount of
galactose was added to initiate growth more rapidly on the
ethanol, as in the presence of ethanol alone initiation of cell
growth may take several days or more, as was the case in the
original experiment describing the ICAT reagent method.
Therefore the original experiment more closely reflects changes
because of separate growth on ethanol or galactose, whereas
the present results essentially reflect expression changes be-
cause of a carbon source shift from galactose to ethanol. This is
reflected in the observation that the ratio of induction of some of
the proteins including for Gal1p and Gal10p, which were meas-
ured to be 100-fold or greater in the initial experiment (25), are
lower in the present experiment. The ability to detect changes in
abundance ratio by a factor of 100 or more demonstrated in
the earlier study indicates that the decreased magnitude of
these ratios relative to the mRNA measurements observed in
the present experiment is not because of a lack of dynamic
range in the mass spectrometric measurement of these val-
ues, but rather it is most likely a biological effect. The complex
mixture of labeled peptides generated in the earlier study was
separated by one-dimensional (reverse phase) chromatogra-
phy, whereas the samples generated in this experiment were
separated by two-dimensional (cation exchange/reverse
phase) chromatography (27). This increased chromatographic
space resulted in an increase in the number of uniquely iden-
tified and quantified proteins from 34 to 245.

DISCUSSION

It is clear from inspection of the data derived from these 245
genes in Fig. 1B that there is a significant number of genes
that show large discrepancies between abundance ratios
when measured at the levels of mRNA and protein expres-
sion. Particularly evident is the clustering of genes in quadrant
1 and 2 of Fig. 1. These genes are showing a significant
increase in relative protein expression on the galactose car-
bon source but no significant change in abundance when
measured at the mRNA level. To better explain the data
presented here, we clustered the genes characterized in this
study by their known cellular roles (36) (see Table I of Sup-
plementary Material), and below we discuss the behavior of
those genes involved in carbohydrate metabolism, respira-
tion, energy generation, and protein synthesis.

Carbohydrate Metabolism Pathway Genes—Fig. 2 shows
the mRNA and protein-expression ratios of genes with known
roles in carbon source metabolism in yeast overlaid onto
schematic representations of galactose utilization and energy
metabolism in yeast cells (5, 32). All five essential proteins
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involved in the conversion of galactose to glucose 6-phos-
phate (Gal1p, Gal2p, Gal5p, Gal7p, and Gal10p) (32) were
identified uniquely and quantified; all are repressed in the
presence of glucose and induced by galactose (36). An addi-
tional protein, Gal3p, could not be characterized unambigu-
ously, as the peptide sequence identified from this protein is
also contained in the Gal1p enzyme. In general, the mRNA
abundances of the galactose utilization genes showed a
larger magnitude of induction on the galactose than the cor-
responding abundances measured at the protein level. For
example, GAL2 showed an �500-fold increase in mRNA ex-
pression on galactose, whereas it showed an �10-fold in-
crease when measured at the protein level. Also shown in Fig.
2 are many of the key glycolytic proteins. These genes
showed increased expression of similar magnitude on the
galactose carbon source at both the mRNA and protein levels,
consistent with the metabolic conversion of galactose to glu-

cose 6-phosphate, which enters into the glycolytic pathway
(32). The genes involved in the respirative conversion of pyru-
vate to acetyl-CoA, including the E3 component of pyruvate
dehydrogenase complex (LPD1), the pyruvate dehydrogenase
complex E1-� subunit (PDA1), and E1-� subunit (PDB1),
showed no significant change in abundance between the two
carbon sources at the mRNA level, while showing small but
significant changes at the protein level. In general, although
the magnitude of change in abundance may have differed in
some cases, the induced changes in expression showed sim-
ilar patterns when measured at the mRNA and protein level for
the major carbohydrate metabolism genes.

Respiratory Genes—The genes involved in the respirative
metabolism of ethanol and their quantitative change at the
mRNA and protein level are also shown in Fig. 2. The first step
in the respirative pathway is the conversion of ethanol to
acetaldehyde, mediated by the alcohol dehydrogenase 2 en-

FIG. 2. Schematic of the major carbohydrate metabolism and respiratory genes characterized in this study. For each gene, the
measured mRNA abundance ratio is given first, followed by the protein-abundance ratio. For some highly homologous proteins (Gal3/1p,
Eno1/2p, Tdh1/2/3p, Adh2/3p, Sdh1p/YJL045W) the peptide sequence identified could not be assigned unambiguously to a single protein. For
these genes, the mRNA abundance ratio given is an average value of transcripts corresponding to each of the proteins indicated.
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zyme (Adh2p) (32). Unfortunately, the peptide sequences
identified as being derived from this protein by way of MS/MS
analysis are contained in both the Adh2p and the closely
related alcohol dehydrogenase 3 isozyme (Adh3p) (37), which
catalyzes the reverse reaction, reducing acetaldehyde to eth-
anol. Therefore the ratio of abundance (which showed no
change between the two carbon sources) of the peptides
identified could not be assigned unambiguously to either of
these enzymes. At the mRNA level, the transcripts from these
two genes showed identical ratios (�2-fold increased abun-
dance on the ethanol carbon source), indicating that there is
most likely crossover hybridization of these two highly similar
transcript sequences (5, 32). Similarly, the peptide sequences
determined from the next enzyme in the ethanol utilization
pathway, aldehyde dehydrogenase protein (Aldp), could not
be differentiated between the cytosolic form (Ald2p) and its
putative isoform (Ald3p) (38). The acetaldehyde oxidizing pro-
tein (Ald6p) was identified unambiguously. Interestingly it
showed no change at the protein level but did exhibit a 3-fold
increase in abundance on the ethanol carbon source at the
mRNA level. The discrepancies between abundance ratios at
the mRNA and protein level of this gene product may indicate
a post-transcriptional control mechanism and is consistent
with the previously reported finding that this enzyme is also
active during fermentative metabolism (39). The acetyl-CoA
synthetase protein (Acs1p), showed an �2.8-fold increase in
protein abundance on the galactose carbon source, with no
significant change in mRNA abundance. This finding is con-
sistent with an earlier finding that suggests Acs1p is re-
pressed by both glucose and ethanol (40).

Energy-generation Genes—The key regulatory genes in-
volved in both the tricarboxylate cycle and the glyoxylate
cycle that were found in this study showed an interesting
result. The genes involved in the glyoxylate cycle showed
strong increases in transcriptional response on the ethanol
carbon source, whereas those genes involved in the tricar-
boxylate cycle showed no significant amount of change (Fig.
2). At the protein level, we observed a more distinct branching

in the expression pattern between the glyoxylate cycle and
the tricarboxylate cycle. Proteins involved in the glyoxylate
cycle, specifically isocitrate lyase 1 (Icl1p), malate synthase 1
(Mls1p), and a peptide sequence common to both Mls1p and
the nearly identical malate synthase 2 (Dal7p) (36) all showed
significantly increased relative abundance on the ethanol car-
bon source. In contrast, those proteins involved in the other
steps of the tricarboxylate cycle (notably Kgd2p and peptide
common to Sdh1p and the related protein derived from open
reading frame YML045W) showed a slight but significant in-
crease in relative abundance on the galactose carbon source
even though the corresponding mRNA levels showed no sig-
nificant changes. The branch point of these two cycles occurs
at the protein Idh1p (41), which showed no significant change in
abundance on either the mRNA or protein levels. This is con-
sistent with recently published evidence that Idh1p is regulated
allosterically by mitochondrial mRNA species (42), and therefore
no change in abundance of the protein on either carbon source
may be expected. The allosteric inactivation of Idh1p channels
the metabolic flow to its competitor Icl1p and therefore into the
glyoxylate cycle in what is known as the glyoxylate bypass (41).
The glyoxylate bypass functions as an alternate mechanism of
energy generation and synthesis of biological precursors under
conditions in which available carbon is scarce (41), thus it
should be expected that this pathway would be utilized prefer-
entially in the presence of ethanol but not in the presence of the
relatively carbon-rich hexose sugar, galactose.

The steps involved in the tricarboxylate cycle are carried out
in the mitochondria, whereas those proteins involved in the
glyoxylate cycle are cystolic (36). Closer examination of the
mitochondrial-located proteins characterized here show that
these consistently exhibited significantly increased relative
protein abundances on galactose, with no significant change
at the mRNA level (Table II). This very clearly indicates the
preferential channeling of energy generation through the tri-
carboxylate cycle during growth on galactose initially indi-
cated by the slightly increased expression of the proteins
Kgd2p and Sdh1p in Fig. 2. The discrepancies between the

TABLE II
mRNA and protein abundance ratios for mitochondrial-located proteins

Gene name Descriptiona mRNAb Proteinb

TRX3 Mitochondrial thioredoxin 0.78 1.7
SOD2 Manganese superoxide dismutase 0.74 1.8
GUT2 Glycerol-3-phosphate dehydrogenase 0.53 2.7
HSP60 Mitochondrial chaperonin 0.58 1.4
PET9 ADP/ATP carrier protein 0.42 2.0
ATM1 Membrane transporter 0.85 3.0
MIR1 Phosphate transporter 0.60 1.9
POR1 Outer mitochondrial membrane porin 1.0 1.5
TUF1 Translation elongation factor 0.69 1.9
YLR168C Putative intramitochondrial sorting protein 0.85 4.0
TOM40 Outer membrane import 0.76 3.5

a Descriptions were obtained from the Yeast Proteome Database (www.proteome.com).
b Ratio � abundance on galactose/abundance on ethanol.
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mRNA and protein-abundance ratios for these genes indicate
a global post-transcriptional control mechanism of these pro-
teins. One possible mechanism of this control may be in-
creased degradation of mitochondrial-located proteins (43)
during growth on ethanol, which has been shown to be car-
bon source-dependent (44). Consistent with this model, the
mitochondrial protease Prd1p (36) showed almost a 3-fold
increase in abundance on the ethanol carbon source, indica-
tive of increased degradation activity in the mitochondria.

The analysis of the genes involved in respiration and energy
generation, taken together with those genes involved in car-
bohydrate metabolism, indicate three patterns emerging from
the comparison of mRNA and protein-abundance ratios: (i)
genes that show close agreement between abundance ratios
(e.g. glycolysis genes); (ii) genes that show the same general
changes in abundance but differ in the magnitude of this
change (e.g. galactose metabolism genes); and (iii) genes that
are discordant (e.g. mitochondrial-located genes), which may
suggest new regulatory mechanisms that are not apparent
from either the mRNA or protein data alone.

Protein-synthesis Genes—Another major component of the
cluster of data points located in quadrant 2 of Fig. 1B are
genes encoding ribosomal proteins (r-proteins) and other
genes involved in protein synthesis (elongation factors, etc.).
As a group these fell into the category of discordant genes, as
these genes showed an average increase in relative protein
abundance on galactose of greater than 2-fold, with no sig-
nificant changes in abundance indicated at the mRNA level.
Amounts of r-protein are known to be proportional to cellular
growth rate (45), thus the increased amount of r-proteins in

the presence of the relatively more favorable carbon source
galactose is expected. In the case of the r-proteins, the dis-
crepancies between the mRNA and protein-abundance ratios
for these genes would seem to contradict previous reports
that r-protein gene expression is strictly and entirely regulated
at the level of transcription (46, 47). It has, however, also been
shown that the abundance of rRNA and r-proteins are under
coordinate control (45) and that this control mechanism at-
tempts to keep a balance between the cellular levels of rRNA
and r-proteins. Following this model, transcriptional control of
rRNA abundances in response to carbon-source perturba-
tions would lead to a subsequent adjustment of r-protein
levels. A discrepancy between abundance ratios of r-proteins
and their corresponding mRNA transcripts might be ex-
pected, at least during the induction phase of the response.
Consistent with this model, the rRNA-processing proteins (36)
Cbf5p, Sik1p, and Nop1p show increases in relative protein
abundances of 2.9-, 2.0-, and 1.7-fold, respectively, on the
galactose carbon source (Fig. 3). It has also been suggested
that one mechanism for post-transcriptional regulation of r-
proteins in response to changes in rRNA levels may be con-
trolled by degradation of excess ribosomal protein (48, 49).
Accordingly, the proteins Pre10p, Rpn8p, and Pup3p, mem-
bers of the 26 S proteasome complex (50), all showed in-
creased abundance (average of greater than 2-fold increase)
on the ethanol carbon source, consistent with increased pro-
tein degradation on this carbon source.

Together with the mitochondrial-located proteins involved
in energy generation and those involved in protein synthesis,
these genes make up a significant portion of the data points

FIG. 3. Data points for proteins that function in the mitochondria, protein-synthesis genes, and rRNA-processing proteins.
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that are clustered in quadrants 1 and 2 of Fig. 1B. These
proteins, along with the rRNA-processing proteins, have been
plotted separately in Fig. 3. It is evident that a large proportion
of protein-abundance ratios measured in this study showed
an increase in expression on the galactose carbon source
relative to the ethanol carbon source. Accordingly, the median
protein-abundance ratio was 1.5 for the entire data set. The
reason for this shift in expression ratios is most likely because
of biological response and not an introduced experimental
effect, as we have reasoned in the case of the energy gener-
ation proteins and also the protein-synthesis genes; the re-
producibility of these results between replicates of this exper-
iment further supports this conclusion.

We have presented here an extensive study comparing the
effects of carbon source perturbations on gene product abun-
dance at the mRNA and protein level in a eukaryotic system.
The results shown here illustrate clearly the complementary
nature of the information obtained at these different points
along the molecular pathway of gene expression. In many
cases the response measured at the mRNA level is in accord-
ance with the response at the protein level, which is illustrated
here by the genes involved in glycolysis. In other cases there
are significant discrepancies between abundance ratios, most
notably for the mitochondrial-located energy generation
genes and the protein-synthesis genes. These clusters of
genes are of most interest, as the differences between the
mRNA and protein data may indicate post-transcriptional
mechanisms of regulation. By itself this data is of course not
sufficient to explain the exact mechanisms of regulation, but it
does provide a direction in which to proceed with more spe-
cifically targeted experiments. One such direction is to look
for conserved gene sequence features among those genes
showing prominent differences between mRNA and protein-
abundance ratios. This can be done using a publicly available
computational tool, AlignACE (51, 52) (atlas.med.harvard.
edu/), which identifies potential Cis-regulatory sequence mo-
tifs common to a set of gene sequences. Applying AlignACE
to the gene sequences for the protein-synthesis genes and
the rRNA-processing genes discussed above, we found a
highly conserved sequence between these genes that has
been described previously as a ribosomal processing ele-
ment, as it was found to be conserved specifically between
rRNA-processing genes (52). The fact that this sequence el-
ement is also conserved in the majority of the protein-synthe-
sis genes characterized in this study indicates a possible target
in the gene sequence that may be responsible for the coordi-
nate control of the expression of these gene products. Further
experiments are necessary to determine whether this sequence
element is responsible for the post-transcriptional regulation of
these genes that has been indicated in this study.

Despite significant improvements in methodologies for as-
saying protein expression, such as the ICAT reagent technol-
ogy used here, the number of unique protein products (245)
characterized in this study is still well below the number of

proteins expected to be expressed in S. cerevisiae (53, 54).
The ability to amplify very low abundance transcripts (7) pro-
vides the mRNA-based approaches an advantage in the abil-
ity to globally characterize gene products, even those of very
low copy number. However, improvements in proteomic ap-
proaches using mass spectrometry are now beginning to
enable truly proteome-wide characterization of protein ex-
pression, as a study described recently that has identified
almost 1500 expressed proteins from a total cell yeast lysate
(55). Given these recent improvements, along with the devel-
opment of more sensitive and accurate mass spectrometric
instrumentation (56), the sensitivity of protein-expression
analysis by mass spectrometry is approaching that of
mRNA-based techniques. Additionally, relative quantification
of protein expression is more accurate than measurement of
expression ratios at the mRNA level, as problems such as
cross-hybridization and sequence-specific effects that can
confound hybridization-based mRNA measurements do not
limit the accuracy of protein measurements. This study, along
with others using the ICAT reagent, has shown the ability of
this approach to measure accurately small changes (less than
2-fold) in protein expression (19, 25, 31). In this study, the
capability to resolve very small changes in protein abun-
dances allowed for the observation of the slight expression
changes of the proteins involved in the tricarboxylate cycle,
which led to the larger finding of the increased abundances of
the mitochondrial-located energy generation proteins.

Finally, in the quest to assign function to gene sequences,
the measurement and comparison of mRNA and protein
abundances is only a start to characterizing biological sys-
tems. Other mechanisms of protein regulation, such as pro-
tein modifications and intermolecular protein interactions, are
also crucial to protein function. Therefore, there is a need for
the development of more comprehensive methodologies that
characterize these modifications and interactions, and recent
reports document significant progress toward these goals (57,
58). It is clear that continued advancements in the compre-
hensive analysis of protein products, in conjunction with the
already mature methods in global measurement of mRNA
expression, will enable the measurement and characterization
of cellular circuitry on a system-wide scale.
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