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A major difficulty in the analysis of complex biological systems is dealing with the low signal-
to-noise inherent to nearly all large biological datasets. We discuss powerful bioinformatic
concepts for boosting signal-to-noise through external knowledge incorporated in processing units
we call filters and integrators. These concepts are illustrated in four landmark studies that have
provided model implementations of filters, integrators, or both.
Introduction
Complexity is the grand challenge for science and engineering in

the 21st century. Complex systems—by definition—have many

parts in an intricate arrangement that gives rise to seemingly

inexplicable or emergent behaviors. For example, a radio

captures an electromagnetic signal and converts it through elec-

tronic circuitry into sound that we hear. To most, the radio is

a black box with an input (electromagnetic waves) and an output

(sound waves). However, understanding the inner workings of

this box requires going head-to-head with the challenges of

complexity. What are the component parts of the system and

how are these parts interconnected? How do these connections

influence functions and dynamic system outputs? In biology,

ultimately one would like to create models that predict the

emergent behaviors of complex entities—and even re-engineer

these behaviors to humankind’s benefit.

To decipher complexity, biologists have developed an

impressive array of technologies—next-generation sequencing,

tandem mass spectrometry, cell-based screening, and so on—

that are capable of generating millions of molecular measure-

ments in a single run. This enormous amount of data, however,

is typically accompanied by a fundamental problem—an incred-

ibly low rate of signal-to-noise. For example, the millions of

single-nucleotide variants (SNVs) found in a typical genome-

wide association study or by the International Cancer Genome

Consortium (Hudson et al., 2010) make it extremely difficult to

identify which particular SNVs are the true causes of disease.

Due to the overwhelming number of measurements, such anal-

yses either lack power to detect the true signal or must admit

an unacceptable amount of noise.

Fortunately, biologists have two major weapons with which

signal-to-noise may be improved. First is what we know about

complexity, which can and should be used as strong prior

assumptions when analyzing biological data. Known principles

of complexity such as modularity, hierarchical organization,

evolution, and inheritance (Hartwell et al., 1999) all provide
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important insights into how biological systems are constructed

and how they function. Second is the availability of data in

many complementary layers—including the genome, transcrip-

tome, proteome, metabolome, and interactome. A recent wave

of new bioinformatic methods has demonstrated how both

weapons—strong prior assumptions related to complexity and

systematic accumulation of complementary data—can be

used together or separately to exact substantial increases in

signal-to-noise.

In what follows, we summarize these developments within

a general paradigm for signal detection in biology. Central to

this paradigm are processing units we call filters and integrators,

which draw on prior biological assumptions and complementary

data to reduce noise and to boost statistical power. To illustrate

these ideas in context, we review four landmark studies that have

provided model implementations of filters and integrators.

The Signal Detection Paradigm
Imagine a biological dataset as a stream of information flowing

into a hypothetical signal detection device (Figure 1A). The infor-

mation flow is quantized into atomic units or events, representing

measurements for entities such as genes or proteins, protein

interactions, SNVs, pathways, cells, or individuals. Each event

contains a certain amount of information, ranging from a single

measurement (e.g., strength of protein interaction) to thousands

(e.g., an SNV state or gene expression value over a population of

patients). Some events represent true biological signals, with the

definition of ‘‘signal’’ depending exquisitely on the type of results

the experimentalist is looking for (e.g., an SNV causing disease

or a true protein interaction; many examples are given later).

The remaining events are noise, which can be due to errors

that are technical in nature (uncontrollable variation in different

instrument readings collected from the same sample) or biolog-

ical in nature (uncontrollable variation in different samples

collected from the same biological condition). An event may

also be considered part of noise even if it is biological and
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Figure 1. Boosting Signal-to-Noise in Biological Data using Prior

Knowledge
(A) Signal detection paradigm in which an input data stream is routed through
a series of filtering and integration units, ending in a statistical test that makes
accept or reject decisions. Symbols: m, information per event or sample size;
D, effect size; ta, decision threshold; FDR, false discovery rate.
(B) Probability distribution P(t) of the test statistic t over the entire data stream
of signal plus noise (purple). This distribution is factored into a red signal and
a blue noise component. FDR and power are visualized in terms of the areas
under these curves to the right of ta.
(C) Effect of varying parameters on the signal, noise, and signal plus noise
probability distributions. The power is increased by more than 6-fold
compared to (B), at an identical FDR. Colors are shown as in (B).
(D) MAGENTA, a specific implementation of the signal detection paradigm for
pathway-based disease gene mapping as described in Segrè et al. (2010).
reproducible, simply because it encodes aspects of phenotype

irrelevant to the current studies.

To make a decision on which events are signal, the device

scores each event and accepts those for which the score

exceeds a statistically defined decision threshold (Figure 1A). It

is precisely this decision that becomes problematic in many

large-scale biological studies, in which one either mistakenly

rejects a large proportion of the true signal (low statistical power)

or must tolerate a high proportion of accepted events that are

noise (high false discovery rate or FDR).
Boosting Signal with Filters and Integrators
To increase signal-to-noise, a pivotal trend in bioinformatics has

been to augment the signal detection process with complemen-

tary datasets andwith prior knowledge about the nature of signal.

The vast majority of these approaches fall into either of two cate-

gories that we call filters and integrators (Table S1 available

online). Filters attempt to cull some events from the information

flow immediately and reject them as noise. For example, a detec-

tion system for differential expression might reject certain genes

immediately if their expression levels fail to exceed a background

value in any condition. Integrators, on the other hand, transform

the information flow by aggregating individual events into larger

units to yield a fundamentally new type of information, or by inte-

grating together different types of information (Hwang et al.,

2009). For example, genes might be aggregated into clusters of

similar expression or of related function, in which the median

levels of the clusters—not their individual genes—are propa-

gated as the ‘‘events’’ on which final accept/reject decisions

are made (Park et al., 2007). Importantly, the combining of filters

or integrators results in a new device that itself can be recom-

bined with other signal detection systems in a modular fashion.

Both filters and integrators influence statistical power and

FDR, but by fundamentally different means. Filters reduce the

fraction of noise passing through the system and, as a conse-

quence, the FDR. Alternatively, as filters are added, FDR can

be held constant by relaxing the decision threshold, resulting in

higher statistical power (Figures 1B and 1C). By comparison,

integrators combine a train of weak signals into fewer stronger

events, leading to an increase in ‘‘effect size’’ and thus a direct

increase in statistical power. These methods complement the

more classical means of boosting power by increasing the

amount of information per event (also called the sample size)

(Figure 1A).

In each of the following four examples, boosting power with

a combination of filters and integrators has been critical to the

success of a landmark genome-scale analysis project.

Example 1: Pathway-Level Integration of Genome-wide
Association Studies
Genome-wide association studies (GWAS) seek to identify

polymorphisms, such as SNVs, that cause a disease or other

phenotypic trait of interest. Despite the success of this strategy

in mapping SNVs underlying many diseases, the identified loci

typically explain only a small proportion of the heritable variation.

For such diseases, one likely explanation is that the genetic

contribution is distributed over many functionally related loci

with large collective impact but with only modest individual

effects that do not reach genome-wide significance in single-

SNV tests (Wang et al., 2010; Yang et al., 2010).

Based on this hypothesis, Segrè et al. (2010) investigated the

collective impact of mitochondrial gene variation in type II dia-

betes. They described amethod called MAGENTA that performs

a meta-analysis of many different GWAS to achieve larger

sample sizes than any single study, thereby increasing statistical

power. MAGENTA also includes both filtering and integration

steps (Figure 1D). First, a filter is applied so that SNVs that fall

far from genes are removed. Next an integrator is applied to

transform SNVs to genes, such that each gene is assigned a
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score equal to the most significant p value of association among

its SNVs. Gene scores are further corrected for confounding

factors such as gene size, number of SNVs per kilobase, and

genetic linkage. Finally, a second integrator combines the scores

across sets of genes assigned to the same biochemical function

or pathway, resulting in a single pathway-level p value of associ-

ation.

Simulation studies using MAGENTA suggest a potentially

large boost in power to detect disease associations

(Figure S1A). For example, the method has 50% power to detect

enrichment for a pathway containing 100 genes of which 10

genes have weak association to the trait of interest. This perfor-

mance is compared to only 10% power to detect any of the 10

genes at the single-SNV level. At this increased power,

MAGENTA did not identify any mitochondrial pathways as func-

tionally associated with type II diabetes, suggesting that mito-

chondria have overall low genetic contribution to diabetes

susceptibility—a surprise given the conventional wisdom about

the disease. On the other hand, in an independent analysis of

genes influencing cholesterol, MAGENTA identified pathways

related to fatty acid metabolism that had been missed by clas-

sical GWAS.

Example 2: Mapping Disease Genes in Complete
Genomes
Sequencing and analysis of individual human genomes is one of

the most exciting emerging areas of biology, made possible by

the rapid advances in next-generation sequencing (Metzker,

2010). As complete genome sequencing becomes pervasive,

one of the most important challenges will be to determine how

such sequences should best be analyzed to map disease genes.

Thesignal filteringand integrationparadigmprovidesanexcellent

framework for developing methods in this arena. As a landmark

example, Roach et al. (2010) described a filtering methodology

for disease genes based on the complete genomic sequences

of a nuclear family of four. This approach was used to identify

just three candidate mutant genes, one of which encoded the

Miller syndrome, a rare recessive Mendelian disorder for which

both offspring, but neither parent, were affected.

To begin the analysis, the four genome sequences were

processed to identify approximately 3.7 million SNVs across

the family. SNVs were then directed through a series of filters

(Figure S2A). In the first, SNVs were rejected if they were unlikely

to influence a gene-coding region annotated in the human

genome reference map (http://genome.ucsc.edu/), leaving

approximately 1% of SNVs that led to missense or nonsense

mutations or fell precisely onto splice junctions. A second filter

removed SNVs that were common in the human population

and thus were unlikely to cause a rare Mendelian disorder. Like

the first one, this filter yielded an approximate 100-fold decrease

in the number of candidates. A third filter was designed to check

inheritance patterns, which can be gleaned only from a family of

related genomes. SNVswere removed that had a non-Mendelian

pattern of inheritance (result of DNA sequencing errors) or did not

segregate as expected for a recessive disease gene, in which

each affected child must inherit recessive alleles from both

parents. This filter yielded another 4- to 5-fold decrease in candi-

date SNVs versus using only a single parental genome. Finally,
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an integrator was used to translate all remaining SNVs into their

corresponding genes.

Using the entire system of filters and integrators under

a compound heterozygote recessive model, a total of three

genes were identified as candidates. One of these (DHODH)

was concurrently shown to be the cause of Miller syndrome.

In this way, the family genome sequencing approach used the

principles of Mendelian genetics (prior knowledge) to correct

approximately 70% of the sequencing errors, directly identify

rare variants (those present in two or more family members),

and reduce enormously the search space for disease traits (cor-

responding to an increase in statistical power from 0.15% to

33%) (Figure S1B).

Example 3: Assembly of Global Protein Signaling
Networks
Another area in which filtering and integration are turning out to

be key is assembly of protein networks. An excellent example

of network assembly is providedby the recentwork of Breitkreutz

et al. (2010), in which mass spectrometric analysis was used to

report a high-quality network of 1844 interactions centered on

yeast kinases and phosphatases. Central to the task of network

assembly was a signal detection system for quality control and

interpretation of the raw data. The data consisted of a stream

of more than 38,000 proteins that had been coimmunoprecipi-

tated with a different kinase or phosphatase used as bait. Bait

proteins can interact both specifically and nonspecifically with

a wide variety of peptides, and the nonspecific interactions

comprise a major source of noise. To remove nonspecific inter-

actions, the authors introduced a method called significance

analysis of interactome (SAINT), in which each putative interact-

ing protein is assigned a likelihood of true interaction based on its

number of peptide identifications (representing the amount of

information per event or sample size) (Figure S2B). After filtering,

the remaining protein interactors are funneled to an integrator

stage in which they are clustered into modules based on their

overall pattern of interactions (Table S1).

The resulting modular interaction network reveals an unprece-

dented level of crosstalk between kinase and phosphatase units

during cell signaling. In this network, kinases and phosphatases

are not mere cascades of proteins ordered in a linear fashion.

Rather, they are more akin to the neurons of a vast neural

network, in which each kinase integrates signals from myriad

others, enabling the network to sense cell states, compute func-

tions of these states, and drive an appropriate cellular response.

It is likely that evolution tunes this network, such that some inter-

actions dominate and others are minimized in a species-specific

fashion. This might help explain two paradoxical effects seen

pervasively in both signaling and regulation: (1) the same

network across species can be used to control very different

phenotypes (McGary et al., 2010); and (2) very different networks

across species can be used to execute near identical responses

(Erwin and Davidson, 2009).

Example 4: Filtering Gene Regulatory Networks
using Prior Knowledge
One of the grand challenges of biology is to decipher the

networks of transcription factors and other regulatory
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components that drive gene expression, phenotypic traits, and

complex behaviors (Bonneau et al., 2007). Toward this goal,

probabilistic frameworks such as Bayesian networks have

been extensively applied to learn gene regulatory relationships

from mRNA expression data gathered over multiple time points

and/or experimental conditions (Friedman, 2004). However,

due to a limited sample size, large space of possible networks,

and probabilistic equivalence of many alternative models, these

approaches are often unable to find the underlying causal gene

relationships.

Recently, Zhu et al. (2008) showed that supplementing

gene expression profiles with complementary information on

genotypes may help to overcome some of these problems

(Figure S2C). These authors sought to assemble a gene regula-

tory network for the yeast Saccharomyces cerevisiae using

previously published mRNA expression profiles gathered for

112 yeast segregants. Rather than assemble a Bayesian network

from expression data alone, the data were first supplemented

with the genotypes of each segregant. The combined dataset

was then analyzed to identify expression quantitative trait

loci (eQTL)—genetic loci for which different mutant alleles

associate with differences in expression for genes at the same

locus (cis-eQTL) or for genes located elsewhere in the genome

(trans-eQTL). The eQTLs were used as a filter to prioritize

some gene relations and demote others. Any candidate cause-

effect relations in which the effect gene is near an eQTL were

removed, as the cis-eQTL already explains the gene expression

changes at that locus. Conversely, cause-effect relations that

were supported by trans-eQTLs and passed a formal causality

test were prioritized. Supplementing gene expression profiles

with genetic information significantly enhanced the power to

identify bona fide causal gene relationships. Further improve-

ment was achieved by introducing a second filter that prioritized

cause-effect relations that correspond to measured physical

interactions, including data from the many genome-wide chro-

matin immunoprecipitation experiments published for yeast

that document physical interactions between transcription

factors and gene promoters.

Summary
Biology is expanding enormously in its ability to decipher

complex systems. This ability derives from the expanded power

to incorporate diverse and complementary data types and to

inject prior understanding of biological principles. Signal detec-

tion systems such as those discussed here—along with their

filters, integrators, and other components—are leading to funda-

mental new biological discoveries and models, some of which

will ultimately transform our understanding of disease and ther-

apeutics. It is also likely that many of the strategies, technolo-

gies, and computational tools developed for healthcare can be
applied to problems of complexity inherent in other scientific

domains, including energy, agriculture, and the environment.

Healthcare and energy will demand significant societal

resources moving forward—and hence offer unique opportuni-

ties to push the development and application of approaches

for attacking complexity.
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