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Computational cellular models are becoming crucial for

the analysis of complex biological systems. An import-

ant new paradigm for cellular modeling involves build-

ing a comprehensive scaffold of molecular interactions

and then mining this scaffold to reveal a hierarchy of

signaling, regulatory and metabolic pathways. We

review the important trends that make this approach

feasible and describe how they are spurring the devel-

opment of models at multiple levels of abstraction.

Pathway maps can be extracted from the scaffold using

‘high-level’ computational models, which identify the

key components, interactions and influences required

for more detailed ‘low-level’ models. Large-scale exper-

imental measurements validate high-level models,

whereas targeted experimental manipulations and

measurements test low-level models.

The Human Genome Project has taught us the immense
power of systematic biology for understanding gene
function. Consider that we, as biologists, are often
confronted with a short stretch of DNA corresponding to
an unknown gene, typically isolated from a clone library or
a gel electrophoresis experiment. Given that the Human
Genome Project has deposited the complete sequence of all
genes into a publicly accessible database, we can use
software tools, such as BLAST [1], to search this genome
database for sequences that are similar to that of the
unknown gene. Some of these similar sequences are likely
to correspond to genes or proteins with known functions,
and, by association, we can infer that the function of our
novel sequence is related. Starting from an initial query
sequence, a genome database search efficiently yields
information about how this sequence is positioned in a
greater functional context.

In the post-genomic era, focus is now shifting from
understanding the function of individual proteins to
understanding how the many proteins interact together
in a complex web of signaling, regulatory, structural and
metabolic pathways in the cell. In contrast to the
systematic methods of genome sequencing, however,
efforts to identify and characterize pathways typically
proceed in a molecule-directed fashion, beginning with an
initial protein of interest and trying to establish other

proteins that are involved in the same pathway. For
example, the initial protein might be used as a ‘bait’ in
genetic experiments such as a synthetic lethal screen [2].
These approaches implicate additional proteins that are
possibly involved in the same pathway, which can
themselves be used as baits in future genetic and
biochemical experiments.

Although molecule-directed approaches have been
successful in assembling most of the knowledge we have
about pathways to date, they are associated with
several inherent difficulties. The first is the time
required: accurate models of pathway function emerge
only after evidence is accumulated over many years
by many researchers and laboratories. Second, these
approaches do not directly reveal how multiple
pathways influence each other, or reveal this cross-
talk only accidentally. Third, despite encouraging
efforts to construct consolidated pathway databases [3]
(http://stke.sciencemag.org/; http://www.afcs.org/), the vast
amountof informationonthevarious intracellularpathways
remains decentralized, buried in the primary literature.

Just as systematic sequencing projects led to a revolu-
tion in mapping genes and genomes, might it therefore be
feasible to adopt a systematic approach to mapping
pathways? Indeed, several emerging experimental and
computational trends indicate how such a systems
approach might work. In all of these cases, the key
preliminary step involves building a comprehensive
scaffold of molecular interactions that broadly covers
many aspects of cellular function and physiological
responses. Although this step constitutes a sizable initial
investment, the molecular interaction scaffold provides a
broad foundation for more directed studies to follow. Just
as we can use BLAST to query a genome database to
identify sequences of interest, so new pathway discovery
and search tools are enabling systems biologists to query
the molecular interaction scaffold to identify and map
pathways of interest in a systematic fashion.

Descending from the scaffold to high- and low-level

pathway models

A good way to visualize this pathway mapping procedure is
as a descent through a series of models at increasing levels
of detail and decreasing levels of abstraction (Box 1). At the
highest level of abstraction, the goal is to analyse theCorresponding author: Trey Ideker (trey@wi.mit.edu).
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complete interaction scaffold to extract the basic com-
ponents and connectivity of the pathway of interest. We
term these connectivity-driven models ‘High Level’ or
‘Level One’ (L1) pathway models. At a more detailed level,
we might wish to supplement the overall pathway
connectivity with an indication of how biological infor-
mation flows from one component to another in the
pathway and, at a lower level still, with the abundances,
kinetics and binding affinities of pathway components and
interactions. We term this broad, more detailed class of
models ‘Low Level’ or ‘Level Two’ (L2) models. The Systems
Biology Markup Language (SBML) [4], under develop-
ment as a modeling and interchange format for biological
pathways, uses a similar nomenclature for pathway
models at different levels of abstraction. Of course,
specifying these levels is by nature somewhat arbitrary;
for purposes of this article, our intention is merely to
distinguish between models at one end of the spectrum
from those at the other. Clearly, a major challenge facing
the modeling community at large is how to move among
models at the various levels.

We now discuss in further detail the trends in
experimental and computational molecular biology that

are making pathway mapping feasible on a large scale.
Based on these trends, we propose a strategy for extracting
high-level models from the interaction scaffold, for moving
between high- and low-level pathway models, and for
designing experiments to advance these models most
effectively.

Systematic experiments for characterizing networks and

states

Signaling and regulatory pathways consist of some
number of components, such as genes, proteins and
small molecules, wired together in a complex network of
intermolecular interactions. Recent technological devel-
opments are enabling us to define and interrogate these
pathways more directly and systematically than ever
before, using two complementary approaches. First, it is
now possible systematically to measure the molecular
interactions themselves, by screening for protein–protein,
protein–DNA and small-molecule interactions (Table 1;
first column). Several methods are available for measuring
protein–protein interactions at large scale, two of the most
popular being the yeast two-hybrid system [5,6] and
protein co-immunoprecipitation in conjunction with

Box 1. Diverse spectrum of high- to low-level computational modeling approaches

Computational models of cellular processes span a wide range of levels

of abstraction (Fig. I). At the highest level, statistical data-mining

approaches correlate dependent with independent variables, elucidat-

ing model components and their potential interrelationships. At a

somewhat lower level, Bayesian networks expand on these relation-

ships by modeling conditional dependencies of ‘child’ nodes on their

‘parents’ in the network, whereas Boolean- and fuzzy-logic models

dictate logical rules governing these dependencies. Finally, at a

relatively detailed level, Markov chains allow probabilistic production,

loss and interconversion among molecular species and states, and

complex systems of differential equations explicitly model physico-

chemical reaction rates, binding constants and diffusion and transport

coefficients.

Abstract, high-level models generally represent qualitative features

of a system, whereas detailed, low-level models most typically

represent quantitative aspects. However, abstraction and quantitation

need not be mutually exclusive concepts. For example, a high-level

model might include the quantitative probability that gene A will

undergo an expression change in response to perturbation of Z.

Similarly, a low-level analysis might produce the qualitative network

structure giving the best fit to an observed set of mRNA levels for A, B

and C in response to Z perturbation.

Fig. I. A diverse spectrum of high- to low-level computational modeling approaches.
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tandem mass spectrometry [7,8]. Although the vast
majority of protein interactions have been generated for
the budding yeast Saccharomyces cerevisiae, protein
interactions are becoming available for a variety of other
species including Helicobacter pylori [9] and Caenorhab-
ditis elegans [10], and are catalogued in public databases
such as BIND [11] and DIPe [12]. A current drawback of
these high-throughput measurements is an associated
high error rate [13]. As we will discuss, one way to address
this problem is to integrate several complementary
datasets together (e.g. two-hybrid interactions with coIP
data or gene expression profiles) to reinforce the common
signal.

Protein–DNA interactions, as commonly occur between
transcription factors and their DNA binding sites, con-
stitute another interaction type that can now be measured
with high throughput. Recently, Lee et al. [14] used the
technique of chromatin immunoprecipitation to charac-
terize the complete set of promoter regions bound under
nominal conditions for each of .100 transcription factors
in yeast, revealing .5000 novel protein–DNA inter-
actions in that organism. Additional types of pathway
interactions, such as those between proteins and small
molecules (carbohydrates, lipids, drugs, hormones and
other metabolites), are difficult to measure on a large scale,
although protein array technology [15–17] might enable
high-throughput measurements of protein–small-
molecule interactions in the near future.

In addition to characterizing molecular interactions, a
second major way to interrogate pathways is to system-
atically measure the molecular and cellular states induced
by the interaction wiring (Table 1; second column). For
example, global changes in gene expression are measured
with DNA microarrays [18], whereas changes in protein
abundance [19], protein phosphorylation state [20] and
metabolite concentration [21] can be quantified with mass

spectrometry, nuclear magnetic resonance and other
advanced techniques. Measurements made by DNA
microarrays are currently the most comprehensive
(every mRNA species is detected), high throughput
(a single technician can assay several conditions per
week), well characterized (experimental error is appreci-
able but understood) and cost-effective (whole-genome
microarrays are purchased commercially for US$50–1000,
depending on the organism). However, continued advances
in protein labeling and separation technology are making
measurement of protein abundance and phosphorylation
state almost as feasible, with the primary barrier being the
expense and expertise required to set up and manage a
mass spectrometry facility. Measurement of metabolite
concentrations, an endeavor otherwise known as metabo-
nomics [22], is currently limited not by detection (thou-
sands of peaks, each representing a different molecular
species, are found in a typical nuclear magnetic resonance
spectrum) but by identification (matching each peak with a
chemical structure is difficult). Clearly, measuring
changes in cellular state at the protein and metabolic
levels will be crucial if we are to gain insight into not only
regulatory pathways but also those pertaining to the cell’s
signaling and metabolic circuitry.

Extracting L1 models from the interaction scaffold

To arrive at an L1 model of a pathway or cellular process of
interest, data on molecular interactions and states are
integrated in a multi-tiered pathway mapping strategy
(Fig. 1). First, the global molecular interaction scaffold is
constructed from systematic measurements of protein–
protein interactions, protein–DNA interactions and/or
metabolic reactions. In the case of budding yeast, a maximal
set might include 14 941 protein–protein interactions
(catalogued in the DIPe database), 5631 protein–DNA
interactions (a combination of TRANSFACw [23]

Table 1. Two systematic ways to learn about pathwaysa

(1) Directly observe the interactions (2) Observe states induced by interactions

Protein–DNA interactions Gene expression

Methods Chromatin immunoprecipitation followed by microarray

analysis

DNA microarrays; SAGE

Databases TRANSFAC (http://transfac.gbf.de/TRANSFAC/) GEO (http://www.ncbi.nlm.nih.gov/geo/)

BIND (http://www.bind.ca/) ArrayExpress (http://www.ebi.ac.uk/microarray/

ArrayExpress/)

Protein–protein interactions Protein levels, locations, modifications

Methods Two hybrid system Mass spectrometry; 2D PAGE

Co-immunoprecipitation followed by mass spectrometry Protein tagging followed by fluorescence microscopy; Protein

arrays

Databases BIND (http://www.bind.ca/) SWISS-2DPAGE (http://us.expasy.org/ch2d/)

DIP (http://dip.doe-mbi.ucla.edu/) TRIPLES (http://ygac.med.yale.edu/triples/)

BRITE (http://www.genome.ad.jp/brite/) Scansite (http://scansite.mit.edu/)

MIPS (http://mips.gsf.de/)

Metabolic interactions and reactions Metabolite and drug levels

Methods No truly systematic measurements, although protein arrays

show promise

Mass spectrometry; two-dimensional NMR

Current challenge is to determine the molecular identities of

all distinct compounds detected

Databases MetaCyc (http://biocyc.org/metacyc/) Public repositories of metabolic profiles not widely available,

KEGG (http://www.genome.ad.jp/kegg/) although data exchange standards for expression profiles

Klotho (http://www.biocheminfo.org/klotho/) (e.g. MAGE-ML) might support metabolic data in future.

aThis table is provided as a representative sample of methods and databases, not as a comprehensive listing. We apologize in advance to those whose work was omitted

because of space considerations.
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and Ref. [14]) and 599 enzymatic reactions (MetaCyc [24]).
Second, this scaffold is filtered against changes in mRNA
expression, protein expression and/or post-translational
modifications recorded in response to different cellular
perturbations. Networks within the interaction scaffold
with mRNA or protein states that are significantly
activated by perturbation are identified and mapped
according to a computational search engine. The inter-
action pathways and complexes making up each ‘activated
network’ in the scaffold constitute L1 models, which are
then prime candidates for further verification and model-
ing as important signaling and compensatory mechanisms
controlling the cellular perturbation response. The key
advance of these searches is that, by integrating two
complementary global datasets, it is possible to condense
and partition the enormous quantity of data into a small
number of relevant pieces suitable for lower level modeling.

Many instances of this general scheme have been
reported in recent literature. For example, several groups
[25–27] have used ‘co-clustering’ approaches to identify
groups of proteins that are both expressed differently
under similar sets of conditions and closely connected by
the same network of interactions in the scaffold (Fig. 1a
[27]; Fig. 1b [26]). In many cases, these ‘expression-
activated networks’ correspond to well-known protein
complexes, regulatory pathways or metabolic reaction
pathways.

Other methods [14,28] use probabilistic approaches to
match changes in gene expression with the transcription
factors that are most likely to regulate them directly
(Fig. 1c [14]). These methods start with a cluster of
differently expressed genes and incrementally choose a

small set of transcription factors that, by virtue of their
levels and/or interactions in the scaffold, can maximally
predict the observed levels of differential expression in the
cluster. New transcription factors are added only if they
lead to a sufficient increase in predictive power over the
transcription factors already in the model.

Pathway searches can be performed using a wide range
of scaffold types and search methods. Jenssen et al. [29]
began with an interaction scaffold based not on physical
interactions between proteins or proteins and DNA but on
gene associations mined from journal abstracts indexed in
PubMed (http://www.ncbi.nlm.nih.gov/PubMed/) (Fig. 1d).
Two proteins appearing together in the same abstract were
linked by a direct interaction in the scaffold. Once again,
by identifying connected regions of this scaffold in which
genes were also co-expressed over one or more exper-
iments, the group identified several ‘literature clusters’ of
genes associated with B-cell activation. Matthews et al.
[30] searched the yeast protein–protein interaction scaf-
fold based not on gene expression data but on homology
against a second such scaffold from C. elegans. The
resulting sets of ‘interologs’ contained only those protein
interactions that were present in both species (Fig. 1e).

Several software tools are now available for visualizing
interaction scaffolds (Osprey, http://biodata.mshri.on.ca/;
PIMRiderw, http://pim.hybrigenics.com/; GenoMaxe,
http://www.informaxinc.com/; Cytoscape, http://www.
cytoscape.org/; Pathway Tools, http://bioinformatics.ai.sri.
com/ptools/). The Cytoscape framework [31] provides
network visualization, layout and annotation, and clusters
the network against expression data to generate activated
(L1) network models. The PathwayTools component of the

Fig. 1. Obtaining the Level 1 (L1) model. New pathway search engines generate L1 models by integrating two types of inputs: (1) an interaction database containing com-

prehensive information about the scaffold of known molecular interactions for a particular species or cell type; and (2) profiles of molecular and cellular states measured

globally in response to particular conditions or perturbations. Given these inputs, the search engine seeks to identify modules of connected proteins in the scaffold whose

states have been altered by perturbation. These ‘activated networks’ become prime candidates for further verification and modeling as important signaling and compensa-

tory mechanisms controlling the cellular perturbation response. A range of recently reported methods (a–f; see text) subscribe to this general pathway discovery

framework.
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MetaCyc metabolic pathway database [32] can superimpose
enzyme expression levels on the map of biochemical
reactions for a species, giving a good indication of which
reaction pathways are most affected over a panel of growth
conditions profiled by microarray (Fig. 1f).

Because DNA microarray technology is currently much
more widespread than technologies for protein or metab-
olite profiling, the vast majority of these approaches have
used gene expression profiling as the primary state
measurement. Of course, pathway-mapping methods
based on mRNA profiling alone capture just one facet of
a much larger and more complex cellular response. As it
becomes possible to measure cellular state at the protein
and small-molecule level, we expect that algorithms
similar to those described above will emerge. Currently,
omitting this information from the analysis means that
key signaling pathways are not mapped or are, at best,
fragmented.

From L1 to L2 models

At the other end of the level spectrum (L2 models), one
wishes to build models with predictive capability for cell
behavior that are physicochemical in nature and based on
low level molecular detail. For instance, consider an
altered DNA sequence leading to a modified protein
structure, which in turn yields an altered rate constant
in a cell signaling process governing cell proliferation,
differentiation or migration. Can we predict how that
sequence change would propagate to a change in cell
function? Several recent proof-of-principle demonstrations
provide this predictive power to a limited degree. For
example, an increase in neutrophil-precursor-cell prolifer-
ation, brought about by modifying a single amino acid
residue in the mitogenic cytokine known as granulocyte
colony-stimulating factor (GCSF), was successfully pre-
dicted a priori by a combination of molecular and cellular
computational modeling [33]. Likewise, the effects of
epidermal growth factor receptor ligand expression on
embryonic tissue patterning in fly development have also
been predicted [34]. Highly detailed physicochemical
models (reaction kinetics and transport phenomena) of
intracellular signaling networks are also beginning to
emerge [35,36], although attempts to directly predict cell
behavioral or tissue physiological functions from quanti-
tative signaling pathway activities have not yet been
undertaken.

In these studies, the crucial molecular network con-
nectivities on which the models were built had previously
been well established by many person-years of qualitative
and quantitative biochemistry, molecular cell biology and
developmental genetics. Thus, these systems were already
ripe for low-level modeling. However, there are relatively
few well-documented systems for which low-level compu-
tational modeling can be effectively pursued. A major goal
and future challenge of systems biology must be to
increase the throughput with which interesting and
important biological problems can be brought to such a
state.

Therefore, what steps can be productively taken
between the L1 ‘interaction scaffold’ modeling efforts
described earlier and the L2 ‘physicochemical’ modeling

efforts noted here? What types of modeling approaches
might lie between them? Some relevant lessons can be
gleaned from circuit design in electrical engineering.
Significantly, large-scale digital circuits are not compre-
hensively modeled at their low-level solid-state physical
properties but instead are typically simulated across
multiple layers of computational hierarchy. For example,
Verilogw [37] is used to build L1 models that perform logic
simulations of large digital circuits; its components are
logic gates, memory units, timers, counters and clocks. At
the next lower level, tools for circuit layout are used to
specify the precise two- and three-dimensional geometry of
logic gates on the silicon wafer. At a lower level still, tools
such as Spice [38] simulate the analog behavior underlying
each digital component; its components are basic electrical
units such as resistors, capacitors, transistors and
batteries. Finally, software packages such as Cadencew
(http://www.cadence.com/) combine many of these func-
tionalities into a single package, effectively bridging the
gap between digital simulations, analog simulations and
layout.

One might approach biomolecular networks in an
analogous manner. Starting with L1 models representing
the key components – DNA, mRNA and/or proteins – for a
system of interest, a next step is to model their potential
influences on one another’s activities and on the cell, tissue
or organ function of concern, even in the absence of
detailed physicochemical information about the nature by
which these influences are conducted. Bayesian network
models appear to be very promising for this purpose; these
have been applied with great success to gene regulatory
networks [39,40] and, more recently, have been proposed
for application to protein signaling networks [41]. This
modeling framework provides insight into which of
the topologically available interactions actually appear
to be influential in the operational activity of the
network. This consequently enables us to focus on subsets
of network components for more in-depth physicochemical
experimental measurement. Additional data on network

Fig. 2. One approach for bridging Level 1 and Level 2 models. Transcriptional regu-

latory networks in Escherichia coli are typically represented as high-level (Level 1)

models, representing protein–DNA interactions between transcription factors and

gene promoter regions. Ronen et al. [43] have described an integrated experimen-

tal–computational procedure for defining these models in greater detail by assign-

ing kinetic parameters (numbers on the interactions) that capture the quantitative

dynamics of the network. Reproduced with permission from Ref. [43]. (q2002

National Academy of Sciences, USA).
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component states (for instance, in response to multiple
driving conditions such as stimuli and treatments) then
permit component–component and component–outcome
influences to be cast in an even-more-explicit model
framework, such as a Boolean algebra formalism. In an
intriguing application of Boolean modeling, a signaling
and cell cycle control circuit (including both mRNA and
protein components) was used to model the simultaneous
impacts of growth factor and extracellular matrix stimu-
lation on cell proliferation [42]. Thus, logic rules for
network component influences can be elucidated and used
to interpret and predict cell behaviors. Once this degree of
cause and effect can be determined, the substantial effort
needed to produce an ultimate, physicochemical model is
easily achieved. Ronen et al. [43] have provided an
excellent example of progressing from an identified L1
model (in this case, governing gene expression in the
Escherichia coli SOS DNA repair system) to a physico-
chemical model with detailed reaction kinetic parameters
(Fig. 2).

Coverage versus leverage: the two phases of

experimental design

The systematic pathway mapping approach has important
implications for experimental design. Just as pathway
modeling has multiple levels (L1 and L2), so experiments
to specify and validate these models are performed in
distinct modes or phases (A and B; see Fig. 3). The goal of
the initial phase (phase A) is to perform experiments that
are comprehensive in nature, to stimulate the pathway of
interest broadly and to perturb all of its components. We
might consider all perturbations of a certain type, such as
all single gene knockouts or all drugs from a library, and
then predict and experimentally observe the effects of each
perturbation on the pathway in question. The result of this
initial phase of experiments is an L1 pathway model.
However, any single L1 model corresponds to many L2

models at the next lower level of detail. Thus, an ensuing
experimental phase (phase B) aims to target specific
components, interactions and other parameters, guided by
the L1 model. In designing these directed experiments, the
perturbations resulting in the most different simulation
outcomes among the models are the most likely to
distinguish between the models and thus to lead to the
largest information gain about the biological system as a
whole. In short, the initial experimental phase is con-
cerned with generating a rich ensemble of model hypoth-
eses, whereas subsequent phases focus on testing and
distinguishing between these various models – that is,
phase A experiments seek coverage and phase B exper-
iments seek leverage.

For instance, in a recent study of metabolic and
regulatory control [44], the yeast galactose-utilization
pathway was stimulated by adding or withholding
galactose from the growth medium and its components
perturbed by deleting each galactose metabolic enzyme
and regulatory gene in a series of knockout strains. In
phase A experiments, gene-expression changes caused by
each of these perturbations were measured using DNA
microarrays. Although the observed changes were gener-
ally in good agreement with those predicted by the model,
several observations were strikingly inconsistent; in these
cases, new hypotheses were suggested to explain these
discrepancies, and the validity of these hypotheses tested
using a second phase of experimental perturbations
directed to target the components in question more
specifically.

A relatively crude but instructive example of phase B
experiments is found in work by Palecek et al. [45]. Here, a
mathematical model had been previously proposed (based
on relatively simple kinetic, transport and mechanics
processes) for how key molecular properties govern the
speed of cell migration across a ligand-coated substratum
[46]. This model had made non-intuitive theoretical
predictions about the effects of cell receptor expression,
substratum ligand density and receptor–ligand binding
affinity. Palecek et al. used molecular cell biology and
biochemistry techniques to enable quantitative variation
and measurement of each of these parameters indepen-
dently and systematically in an engineered cell line to give
a rigorous and successful experimental verification of the
component-to-system predictions. The capabilities of
molecular genetics, pharmacology and biomaterials to
vary molecular component properties systematically and
quantitatively in cellular systems are now very strong;
thus, once specific predictions are generated from L2 model
hypotheses, there is no shortage of means to test them.

Perspectives

Where are pathway modeling efforts headed in the future?
It is revealing that, outside biotechnology and the
pharmaceutical industry, nearly every sector of manufac-
turing depends on computer simulation and modeling for
product development. Circuit manufacturers rely on
computer aided design (CAD) tools to model the wiring
of transistors and other circuit components as well as
their two- and three-dimensional layouts on the silicon
wafer. Likewise, automotive engineers can estimate

Fig. 3. Driving the modeling cycle. Level 1 (L1) models are extracted from the mol-

ecular interaction scaffold by systematic phase A experiments. In phase B, directed

experiments are performed to verify particular models while excluding others. In

general, models at a more abstract level are consistent with many possible models

at the next level of detail, so that a well-supported L1 model might be instantiated

as its corresponding set of Level 2 models in additional cycles of phase B

experiments.
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how many miles per gallon to expect from the next
model long before it is built on the assembly line, all
through extensive CAD simulation [e.g. software from
LMS International (http://www.lmsintl.com/) or Adams
MSC (http://www.adams.com/)].

It is worth noting that, although instructive in their
successes, these ‘mainstream’ computer modeling efforts
have not been free from difficulty. For instance, even in
disciplines in which modeling methodologies are well
established, small discrepancies between the model and
reality can compound to cause predictions that are grossly
inaccurate. Moreover, as models become extremely large
and complex, it becomes infeasible to evaluate their full
range of inputs and resulting behaviors. Thus, although
we will undoubtedly benefit from prior experience in
mainstream engineering, we should also expect that
substantial new research will be required to develop
powerful CAD tools for biology.

Might pharmaceutical companies one day use compu-
tational modeling to simulate the effects of drugs on cells
before proceeding to trials in human subjects? In the field
of chemoinformatics, software tools are increasingly
popular for predicting drug candidates that are likely to
bind protein targets, and companies such as Physiome
Sciences and Entelos market computer models of specific
disease pathways for drug discovery and development,
including clinical trial interpretation and design. How-
ever, the recent advances in systematic pathway mapping
described here suggest a compelling use for computational
tools at a different step in the drug development pipeline:
assessing toxic side effects. Because the molecular inter-
action scaffold offers an unbiased, high-level view into
many pathways, a search of this scaffold could indicate
which compensatory pathways are perturbed by a drug in
addition to its intended disease-pathway target. Drugs
activating pathways associated with stress and other toxic
effects could be eliminated from further consideration.
Given that more than six out of every seven drug
candidates that undergo human testing ultimately meet
with failure [47], such software would act as a much-
needed additional filter between high-throughput screen-
ing for drug candidates and the time-consuming, costly
follow-up of human testing. In this regard, the emergence
of comprehensive, high- to low-level modeling strategies
will provide helpful impetus for the acceptance of
computational modeling tools in both the pharmaceutical
industry and in biology as a whole.
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