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Systematic interpretation of genetic 
interactions using protein networks
Ryan Kelley1,2 & Trey Ideker1,2

Genetic interaction analysis,in which two mutations have a 
combined effect not exhibited by either mutation alone, is 
a powerful and widespread tool for establishing functional 
linkages between genes. In the yeast Saccharomyces 
cerevisiae, ongoing screens have generated >4,800 such 
genetic interaction data. We demonstrate that by combining 
these data with information on protein-protein, prote 
in-DNA or metabolic networks, it is possible to uncover 
physical mechanisms behind many of the observed genetic 
effects. Using a probabilistic model, we found that 1,922 
genetic interactions are significantly associated with 
either between- or within-pathway explanations encoded 
in the physical networks, covering ~40% of known genetic 
interactions. These models predict new functions for 343 
proteins and suggest that between-pathway explanations 
are better than within-pathway explanations at interpreting 
genetic interactions identified in systematic screens. This 
study provides a road map for how genetic and physical 
interactions can be integrated to reveal pathway organization 
and function.

A major biological challenge is to interpret observed genetic interac-
tions in a physical cellular context1–3. There are several major types 
of genetic interactions: synthetic-lethal interactions, in which muta-
tions in two nonessential genes are lethal when combined; suppressor 
interactions, in which one mutation is lethal but when combined 
with a second, cell viability is restored; and an array of other effects 
such as enhancement and epistasis. Genetic interactions have been 
used extensively to shed light on pathway organization in model 
organisms1–4. In humans, genetic interactions are critical in link-
age analysis of complex diseases5 and in discovery of new pharma-
ceuticals6. Although genetic interactions are classically identified 
by mutant screens7, recent studies have applied systematic ‘reverse’ 
methods such as synthetic genetic arrays (SGA)8 or synthetic lethal 
analysis by microarrays (SLAM)9 to catalog ~4,000 synthetic-lethal 
and synthetic-sick interactions in Saccharomyces cerevisiae.

Because of the high-throughput nature of SGA, discovery of new 
genetic interactions is largely automated. However, interpreting the 

functional significance of each result remains a relatively slow process. 
The problem is compounded by the large number of genetic interac-
tions measured when screening one gene versus all others (~34 on 
average10) as well as possible false positives if the interactions are 
not confirmed by tetrad or random spore analysis. Thus, without 
further methods to aid in characterizing synthetic lethals, large-scale 
interpretation is a daunting prospect.

A promising solution may be to integrate synthetic lethals with 
other types of high-throughput interactions. For instance, direct 
physical interactions among proteins are being mapped by systematic 
two-hybrid11–15 or immunoprecipitation studies16,17, whereas physi-
cal interactions between transcription factors and promoter sites are 
determined using chromatin-immunoprecipitation in conjunction 
with DNA microarrays18,19. These interactions comprise a physical 
network, which correlates with the network of genetic interactions 
and provides potential clues as to the mechanisms behind particular 
synthetic-lethal effects. Previous studies have demonstrated this cor-
related structure in yeast, by showing that two proteins in the same 
region of the genetic network are likely to also physically interact8,10, 
that genes with similar patterns of genetic interactions often occur 
within the same protein complex10 and that a protein with many 
interactions in the physical network typically has many interactions 
in the genetic network also20.

These studies suggest that it may be possible to interpret observed 
synthetic-lethal relationships explicitly using physical interactions. 
In this regard, previous authors1,21 have noted that synthetic-lethal 
interactions are typically associated with one of three types of physical 
interpretations: between-pathway models, within-pathway models and 
indirect effects (Box 1).

Here, we demonstrate a computational framework for assem-
bling genetic and physical interactions into models corresponding to 
between- versus within-pathway interpretations. Regions of the physi-
cal network that correspond to each type of model are identified using 
a probabilistic scoring scheme. These models predict new protein func-
tions and suggest that genetic interactions are more likely to bridge 
redundant or complementary processes than to combine additively 
within the same process.

Construction of genetic and physical networks
We assembled a genetic interaction network from two primary data 
sources (Fig. 1). The first was generated by SGA, a large-scale screen10 
crossing 132 yeast gene deletion strains versus each of the ~4,700 avail-
able deletion strains22 and resulting in 2,012 observed synthetic-lethal 
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interactions and 2,113 synthetic-sick interactions. The second data 
source consisted of an additional 687 synthetic-lethal interactions culled 
from the literature and catalogued at the Munich Information Center 
for Protein Sequences (MIPS)23. The combined genetic network syn-
thesizing these data consisted of 1,434 proteins (genes) linked by 4,812 
synthetic-lethal interactions.

We also assembled a physical network of 5,993 yeast proteins con-
nected by physical interactions of three types: 15,429 protein-protein 
interactions (the two proteins a and b display physical binding); 5,869 
protein-DNA regulatory interactions (a binds upstream of the gene 
encoding b) and 6,306 shared-reaction metabolic relationships (a and 
b are enzymes that operate on at least one metabolite in common). 
The protein-protein interactions were downloaded from the DIP data-
base24 as of July 2004 and predominantly included data from large-scale 
experiments13,15–17. The protein-DNA interactions were obtained from 
a large-scale chromatin-immunoprecipitation study of 106 transcription 
factors18 (interactions with P = 0.001). Enzymatic reactions linked by 
common metabolites were obtained from KEGG25, excluding metabolite 
cofactors such as ATP or H2O (listed in Supplementary Table 1 online). 
The combined physical network covered 94.4% of all proteins in the 
genetic network. Both networks are provided at http://www.cellcircuits.
org/Kelley2005/ in Cytoscape26 (SIF) format.

Between-pathway interpretations for genetic interactions
Preliminary statistical analyses confirm a limited relationship between 
genetic and physical interactions (see Supplementary Fig. 1 online and 

Tong et al.8,10), but demonstrate a need for structured models to effi-
ciently separate signal from noise. Towards this goal, we implemented 
a probabilistic modeling procedure to capture the between-pathway 
interpretation of genetic interactions. This procedure involved a search 
for pairs of physical pathways that were densely connected by genetic 
interactions, in which a ‘pathway’ was loosely defined as any densely con-
nected set of proteins in the physical network (this definition generically 
covers many network structures, including protein complexes). Pairs of 
pathways (constituting a single network model; see Fig. 1) were assigned 
a score proportional to the density of physical interactions falling within 
each pathway and the density of genetic interactions bridging between 
pathways  (Box 2). This search generated 360 significant models cover-
ing 401 pathways and incorporating a total of 1,573 genetic interactions 
(196 MIPS, 687 SGA synthetic lethal, 690 SGA synthetic sick) and 1,931 
physical interactions (1,248 protein binding, 77 regulatory, 606 shared 
reaction). Significance of these models was assessed by comparison to 
random genetic and physical networks. Detailed information for all 
models is provided in Supplementary Tables 2 and 3 online and at 
http://www.cellcircuits.org/Kelley2005/.

Pooling diverse genetic and physical interaction data sets widens the 
search but also has the potential to decrease the coverage of network 
models, because not all data sets may be equally predictive and high-
scoring network models are more likely to arise at random in large net-
works. To investigate the effect of data pooling, we repeated the search 
on a smaller network comprising large-scale synthetic-lethal (SGA) and 
protein-binding (DIP) interactions only. This reduced search identified 
20 models containing a total of 137 synthetic-lethal and 120 protein-
binding interactions (Fig. 2). In comparison to the complete search, 
fewer protein-binding and SGA synthetic-lethal interactions were 
incorporated into models, demonstrating the synergy obtained by data 
pooling (although models generated by the restricted search performed 
somewhat better in validation). Supplementary Table 4 online analyzes 
the impact of removing each physical and genetic data set from the 
modeling procedure.

Within-pathway interpretations
We next searched the physical and genetic networks for within-pathway 
explanations. This procedure assigned a high score to single sets of pro-
teins that were densely connected by both physical and genetic interac-
tions (see Fig. 1, Box 2 and Supplementary Fig. 2 online). This search 
yielded 91 significant models. In all, these contained 272 MIPS, 225 SGA 
synthetic lethal and 169 SGA synthetic-sick interactions associated with 
318 protein-binding, 37 regulatory and 36 shared-reaction interactions. 
Four representative within-pathway models are shown in Figure 3.

Box 1  Interpretations of genetic interactions

Between-pathway interpretations. The genetic interaction 
bridges genes operating in two pathways with redundant or 
complementary functions. Deletion of either gene is expected 
to abrogate the function of one but not both pathways.

Within-pathway interpretations. The genetic interaction occurs 
between protein subunits within a single pathway. A single 
gene is dispensable for the function of the overall pathway, but 
the additive effects of several gene deletions are lethal.

Indirect effects. The synthetic lethal phenotype is not mediated 
by a localized mechanism in the physical network. Indirect 
effects can occur because a deletion phenotype represents not 
just the absence of one particular gene, but  also the response 
of the cell to its absence, involving many diverse pathways21.

Network model
identification
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Figure 1  Method overview. A combined physical 
and genetic network is searched to identify 
between- or within-pathway models of genetic 
interactions. The between-pathway model 
implies two groups of proteins (pathways) with 
many physical connections within each pathway 
(solid blue links) and genetic interactions 
spanning between pathways (dotted red links). 
The within-pathway model implies many 
physical and genetic interactions within the 
same group of proteins. In the search, 360 
and 91 network models were identified that 
correspond to between- or within-pathway 
searches, respectively.
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Functional enrichment of models
As initial validation of the between- and within-pathway models, we 
found that both types were significantly enriched for particular func-
tional annotations recorded in the Gene Ontology database27. Two-hun-
dred and fifty-one out of 401 pathways in between-pathway models were 
enriched for proteins with a common Molecular Function, Biological 
Process or Cellular Component annotation using the hypergeometric 
test (P = 0.05; Bonferroni-corrected for multiple testing)28. Similarly, 
52 of the 91 within-pathway models were enriched for Gene Ontology 
annotations. Moreover, these functional enrichments were higher 
than expected based on the physical interaction network alone (see 
Supplementary Table 5 online).

Prediction of new protein functions
Having established that proteins in many of the between- and within-
pathway models were enriched for specific annotations, we used this con-
cept to predict new protein functions. Specifically, for physical pathways in 
which a majority of proteins were already assigned a common significant 
annotation, we predicted this term for the remaining proteins in the path-
way. To eliminate overly general predictions, significance was assigned only 
to those terms that were enriched at a level of P = 0.05 and were associated 
with fewer than 100 yeast proteins overall.

For between-pathway models, this approach predicted 745 molecular 
function, biological process or cellular component annotations among 
282 proteins. In comparison, the within-pathway models predicted 285 

annotations involving 127 proteins, bringing the total to 973 annotations 
for 343 proteins accounting for repeated predictions. A list of novel func-
tional predictions is provided in Supplementary Table 6 online. Less than 
a quarter of these predictions were attainable using a similar approach 
based on the physical network only (Supplementary Table 7 online).

Accuracy of these predictions was estimated using cross validation29. 
Using a standard five-way procedure, the set of yeast proteins was parti-
tioned such that annotations were hidden for one-fifth of the proteins and 
annotations for the remaining four-fifths of proteins were used to predict 
the hidden information. Each prediction for a protein in the ‘hidden set’ 
was scored as a success or failure depending on whether it recovered a hid-
den annotation. Using this approach, the success rate was estimated to be 
63% for between-pathway models, 69% for within-pathway models.

Prediction of new genetic interactions
Finally, we investigated whether the network models could predict the 
existence of new genetic interactions (Fig. 4). According to the between-
pathway model, proteins in one pathway genetically interact with many 
of the same partners in a second pathway. This leads to the occur-
rence of ‘complete bipartite motifs’ in the genetic interaction network, 
defined as four-protein subnetworks in which the first two proteins 
are connected to the second two proteins by all four possible genetic 
interactions (Fig. 4a; see Milo et al.30 for an introduction to network 
motifs). When an incomplete motif (IM) is observed, for which only 
three of the four genetic interactions are present, the motif implies 

Box 2  Scoring the models

Scoring within-pathway explanations. The within-pathway model 
implies dense interactions within a single group of proteins in both 
the physical and genetic networks. We adopt a previously described 
log-odds score37 to assess the likelihood that a group of proteins is 
more densely connected than would be expected at random: 

where V is a set of proteins and E a set of interactions among 
those proteins (genetic or physical). IE(a,b) is an indicator 
function which equals 1 if and only if the interaction (a,b) occurs 
in E and otherwise 0. For Modeldense, interactions are expected 
to occur with high probability (β) for every pair of proteins in V. 
In this work, β is set to 0.9 (Supplementary Fig. 2 shows how the 
results depend on choice of β). For Modelrandom, the probability 
of observing each interaction (ra,b) is determined by estimating 
the fraction of all networks with identical degree distribution 
which also contain that interaction. Comparable random networks 
are generated by ‘crossing’ pairs of edges in a process similar 
to that described by Milo et al.30 In this randomization, only 
edges of the same type are allowed to be crossed. In addition, for 
undirected types, either interacting node is allowed to serve as 
the ‘source’ in crossing the edges. Such randomization generates 
a family of random networks which resemble the original network 
and corrects for the presence of highly connected proteins, 
which score highly under both models. The interaction density is 
evaluated independently for the physical and genetic networks, 

yielding an overall score for the within-pathway model:
S = Swithin(V,Ephysical) + Swithin(V,Egenetic).

Scoring between-pathway explanations. The between-pathway 
model implies dense genetic interactions connecting two separate, 
nonoverlapping groups of proteins, where each group is densely 
connected by physical interactions. The density of physical 
interactions is scored independently within two sets of proteins 
V1 and V2 using the above function S. A related log-odds score 
is used to evaluate the probability that the genetic interactions 
Egenetic bridging between these sets are denser than random:

The final scoring function for the between-pathway model is then:

Search and Significance. Sets of proteins that are well explained 
by either the within-pathway or between-pathway models are 
identified using a greedy network search procedure. The search 
is as previously described by Sharan et al.37 except that it 
is seeded from each pair of genetically interacting proteins. 
Pathways that share more than 50% of genetic interactions 
with a higher-scoring result are discarded. To determine the 
significance threshold, identical searches are performed over 
100 random trials in which both the genetic and physical 
networks are randomized as described above. Models that score 
higher than the maximal-scoring models in 95% of random trials 
are reported as significant.

Swithin(V,E) = log
P (V, E ⎜ Modeldense)

P (V, E ⎜ Modelrandom)

= log

Π I

I

E
(a,b) + (1 –  ) (1 – IE(a,b))β

(a,b)∈V × V

Πra,b ra,bE (a,b) + (1 –     ) (1 – IE(a,b))
(a,b)∈V × V

β

Sbetween(V1,V2,Egenetic) = log

Π β I
E

(a,b) + (1 –  ) (1 – IE         (a,b))β
(a,b)∈V  × V  1 2

genetic genetic

Π I
E

(a,b) + (1 –     ) (1 – IE         (a,b))
(a,b)∈V  × V  1 2

genetic genetic
ra,b ra,b

S(V1, V2, Eall) =     Swithin(Vi, Ephysical) + Sbetween(V1, V2, Egenetic)Σ
i =1,2

ANALYS IS
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



564 VOLUME 23   NUMBER 5   MAY 2005   NATURE BIOTECHNOLOGY

that the remaining interaction is true. Physical network information is 
incorporated by requiring that valid incomplete motifs fall within (i.e., 
are subgraphs of) a between-pathway model.

We applied the technique of five-way cross-validation to estimate 
the accuracy of genetic interaction prediction versus the minimum 
number of required incomplete motifs (Fig. 5). In each of five cross-
validation trials, approximately one-fifth of the genetic interaction 
data were withheld, including both positive and negative interactions 
measured for each genetic ‘bait’ in SGA. These positive and negative 
interactions were subsequently used to test prediction accuracy. For 
instance, at a prediction threshold of eight or more incomplete motifs, 
the between-pathway models predicted 43 new genetic interactions 
with 87% estimated accuracy (Fig. 5). To assess the contribution of 
the physical models in the prediction process, we also predicted ‘naive’ 
genetic interactions by relaxing the requirement that incomplete motifs 

fall in a between-pathway model. The estimated accuracy fell to 5% 
for these naive predictions, evaluated at the same threshold of eight 
incomplete motifs.

For the within-pathway models, genetic interactions were implied 
between proteins that had genetic interactions with one or more com-
mon neighbors (Fig. 4b). The physical network was incorporated by 
restricting the proteins and neighbors to fall into a single within-path-
way model. The number of common neighbors was used as a measure of 
confidence in the implied genetic interaction, and cross validation was 
used to estimate the prediction accuracy as a function of this number. 
The maximal prediction accuracy was 38%, achieved at a prediction 
threshold of three or more common neighbors (Supplementary Fig. 3 
online). The corresponding success rate for naive predictions, made 
without constraining the proteins to occur in within-pathway models, 
was 15%. Thus, both types of models enhance the accuracy of prediction 

of genetic interactions, but between-pathway 
models appear to be better predictors than 
within-pathway models.

Preponderance of between-pathway 
interactions
Given a systematic approach for associating 
genetic interactions with physical interpre-
tations, it is of interest to ask which type of 
interpretation is most common. Focusing on 
large-scale SGA measurements, roughly three-
and-a-half times as many genetic interactions 
are associated with between- as opposed to 
within-pathway models (1,377 versus 394 SGA 
interactions). These figures can be viewed as 
an a priori expectation that a newly deter-
mined SGA interaction will fall between versus 
within pathways, suggesting that SGA interac-
tions typically span between multiple physical 
network regions instead of occurring within a 
single complex or pathway. One reason for the 
preference towards between-pathway models 
may be that SGA interactions are mainly tar-
geted to nonessential genes (due to their use 
of complete gene deletions as opposed to, 
e.g., point mutations made by classical tech-
niques).

Using physical models, it is possible to 
characterize approximately 40% of the 
genetic interactions as occurring between 
or within pathways. Whether the remain-
ing interactions belong to between-pathway 
models, within-pathway models or are best 
characterized as ‘indirect’ (Box 1) cannot be 
reliably determined at this stage. For exam-
ple, consider the case of two related pathways, 
each with only one protein required for path-
way function. In this case, only the required 
proteins would be connected by a (single) 
genetic interaction across the pathways, 
making it difficult for the between-pathway 
model to achieve statistical significance.

Further examination of the between-path-
way models reveals that many of the genetically 
linked pathways have clear interdependent 
functional relationships. For example, pathway 
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M contains members of the prefoldin complex, which have synthetic-
lethal interactions with members of pathways N and T forming parts 
of the dynactin complex and kinetochore, respectively (Fig. 2a). The 
prefoldin complex promotes folding of α- and β-tubulin into func-
tional microtubules31. These are important for the function of dynactin, 
an adaptor complex involved in translocating the spindle and other 
molecular cargos along microtubules32, as well as the kinetochore, which 
anchors chromosomes to spindle microtubules during metaphase33. 
Apparently, deletion of proteins in the prefoldin complex reduces micro-
tubule stability, leading to synthetic-lethal interactions with pathways 
that are directly dependent on microtubule function.

These pathways also predict a new function for the uncharacterized 
protein Yll049w (pathway N). This protein binds Jnm1, a dynactin 
protein which is required for spindle partitioning in anaphase32. In 
addition, it has synthetic-lethal interactions with members of the 
prefoldin complex in a manner similar to dynactin genes. Together, 
these relationships suggest that Yll049w is associated with dynactin 
during spindle partitioning. However, because Jnm1 has 12 physical 

interactions overall, and Yll049w has a total of 14 interactions in the 
genetic network, this prediction would have been difficult to make 
without an integrated approach.

Pathways O, U and Y provide another example of synergistic path-
ways linked by genetic interactions (Fig. 2a). Pathways U and Y mediate 
retrograde transport of proteins to the Golgi apparatus34,35. Pathway O 
(Bre1, Lge1) is involved in histone ubiquitination and cell size control, 
where cell size is influenced by the histone ubiquitination activity by an 
unknown process36. The abundant genetic interactions between path-
ways O and U indicate a possible role for retrograde transport in histone 
ubiquitination, or reciprocally, for histone ubiquitination in retrograde 
transport. Moreover, the uncharacterized protein Yel043w is physically 
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Figure 3  Within-pathway explanations for genetic interactions. A total of 91 
pathways were identified, of which four examples are displayed. Color is used 
to indicate the data set from which each interaction was drawn.

Figure 4  Genetic interaction prediction schemes. Two different schemes are 
proposed for predicting genetic interactions, depending on the underlying 
network model. Observed genetic interactions are shown in red, while the 
corresponding predicted genetic interactions are shown in gray. (a) Under the 
between-pathway model, two incomplete bipartite motifs are shown which 
predict a genetic interaction between genes b and b′. (b) Under the within-
pathway model, common genetic neighbors are used to predict a genetic 
interaction between genes d and d′. Note that these diagrams contain 
additional incomplete motifs which have been omitted for clarity: the motifs 
in a can be rearranged to predict genetic interactions (a to c′) and (c to a′); 
the motifs in b can be rearranged to predict (e to f).

Figure 5  Success rate of genetic interaction prediction versus the 
stringency of prediction. Success rate is measured through cross-validation 
as (predicted positives)/(predicted positives and negatives). Stringency is 
defined by the minimum number of incomplete bipartite motifs required 
for prediction. Blue diamonds mark the success rate for predictions in 
which incomplete motifs must occur in a between-pathway model. The 
success rate is dramatically higher than for naive predictions (magenta) 
which predict interactions in the same manner, but are not constrained 
by the physical network. Even for much more stringent prediction criteria, 
the success rate of naive predictions fails to exceed that of the between-
pathway predictions (inset).
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associated with Bre1 and Lge1 and also has the same pattern of genetic 
interactions, suggesting that the three proteins may function together.

In summary, we have presented a methodology for integrating large-
scale genetic and physical networks to capture the physical context behind 
observed genetic interactions. Approximately 40% of yeast synthetic-
lethal genetic interactions can be incorporated into high-level physical 
pathway models and are approximately three and a half times as likely to 
span pairs of pathways than to occur within pathways. Further studies will 
be needed to address other types of genetic effects to extend this approach 
from yeast to the growing number of other organisms for which protein 
networks are now available. As systematic approaches generate ever larger 
databases of interactions across a variety of species, integrative modeling 
approaches such as the one proposed here will be indispensable for select-
ing and organizing the information into predictive models.

Note: Supplementary information is available on the Nature Biotechnology website.
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