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plants retain both of the adjacent cpDNA
NcoI sites that are outside the experimental
construct. Most digested DNA samples
from the kanamycin-resistant plants show
two hybridization fragments that mirror
those in the transplastome (Fig. 3a,b in ref.
1). The generally large size of the integrants
is confirmed by sequence data from two of
the kanamycin-resistant plants (Fig. 3e,f in
ref. 1). For example, there are 1,775 bp of
vector chloroplast DNA and 5,917 bp of
nonvector chloroplast DNA (see
Supplementary Information to ref. 1)
between the junction with nuclear DNA
and the aadA gene in kr1. Similarly, there
are 1,165 bp of vector chloroplast DNA and
934 bp of nonvector chloroplast DNA adja-
cent to the junction site downstream of neo
in the nuclear integrant of kr17.
Consequently, there can be no doubt that
most of these integrants contain more
DNA of chloroplast origin than was pre-
sent in our experimental cassette (see Fig.
1). Integrants that are shorter than the
chloroplast transformation vector may also
be present.

Regarding the concern over multiple
integrants, we do not yet understand the
complexity of the transfer process, but we
do know that single Mendelian loci are
involved in all but four of the kanamycin-
resistant plants from the screen. Multiple
integrations do not require multiple trans-
position events. The lysis of a single plastid
would release tens to hundreds of plastid
genomes into the cytoplasm, some of
which could integrate into a common
genomic location. This process could be
analogous to the high-copy number of
transgenes delivered into the cell via biolis-
tic transformation, so it is not surprising to
find a proportion of multiple integrants
among the kanamycin-resistant plants.

We did not conclude that chloroplast-spe-
cific genes, such as aadA in our experiment,
will not function when transposed to the
nucleus. What we did show, in all cases where
we selected for nuclear kanamycin resistance,
was that the relocated neo gene was accompa-
nied by the adjacent aadA gene (and other
flanking native chloroplast DNA). We noted
that the latter gene was not expressed to con-
fer spectinomycin resistance.

A News & Views commentary4 that
accompanied our article in Nature suggest-
ed that we undertake a much larger screen
to search for spectinomycin resistance to
determine whether a chloroplast specific
gene rarely could be expressed after inte-
gration into an appropriate nuclear envi-
ronment. This is an evolutionary experi-
ment in the true sense, but the likely scale
of such a screen is daunting. However, such
an approach may greatly increase our

understanding of the evolution of nuclear-
encoded plastid genes.

Finally, we stated in our paper that there
was likely to be an equilibrium between the
ingress of chloroplast DNA sequences and
their elimination. The fact that Daniell and
Parkinson know of no such mechanism
merely demonstrates that there is still
much to learn about the processes of
genome evolution.
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Global architecture of genetic interactions 
on the protein network

To the editor:
Recent and ongoing experiments are
uncovering large networks of both protein-
protein and genetic interactions in cells1–3.
Although integration of these networks
into a single model has immense promise as
a tool for understanding basic cellular
mechanisms and disease, it is critical to first
understand their high-level correlations
and interdependencies. Here, we report that
highly connected ‘hubs’ in the protein-pro-
tein network are surprisingly likely to be
involved in genetic interactions, particular-
ly with other hubs.

We constructed a physical network for
the yeast Saccharomyces cerevisiae consist-
ing of 15,114 pairwise interactions among
4,716 proteins as recorded in the DIP4 data-
base, as of the March 2, 2003 release.
Protein-protein interactions in this data-
base represent a pooled collection of several
yeast two-hybrid and co-immunoprecipita-
tion experiments. Next, the physical net-
work was combined with a genetic network
consisting of 1,312 unique genetic interac-
tions drawn from MIPS5 (April 3, 2003) and
a systematic screen by Tong et al.3

Approximately 70% of genetic interactions
were synthetic lethal interactions (muta-
tions in two nonessential genes that are
lethal when combined) while the remaining

Figure 1. Overlap in connectivity between
physical and genetic interaction networks. (A)
Frequency of genetic interaction (percent ±
standard error) versus degree of physical
connectivity C, binned over all gene pairs in the
network.The overall correlation is preserved when
essential genes are excluded from the network;
whether suppressor or synthetic lethal interactions
are examined separately or pooled; or if C is
computed using an arithmetic instead of geometric
mean (data not shown). (B) Possible
interpretations for panel A. In scenario 1, physical
interaction hubs (a and b) are biased to genetically
interact with each other; in scenario 2, hubs b
genetically interact with many partners a of both
low and high physical connectivity. (C) Ratio of
observed/expected numbers of genetic
interactions between protein hubs (proteins with ≥
h physical interactions) computed for increasing
values of h. If hubs are nonbiased (scenario 2),
then the expected number of genetic interactions
between hubs is g·(n choose 2) / ((n choose 2) +
n·m), where n, m, and g are the numbers of hubs,
non-hubs and genetic interactions involving a hub,
respectively, for a particular hub size h. Further
information is available at
http://web.wi.mit.edu/ideker/pub/nbt/.
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30% were classified as suppressors (one
mutation is lethal but combination with a
second restores viability). Although these
data sets are almost certainly incomplete
and may also contain a substantial number
of false positives6, we take the currently
available physical and genetic interactions
as representative of the true underlying
networks.

To investigate the overlap between the
genetic and physical networks, we record-
ed the number of connections k that each
protein had in the physical network, and
we computed a combined physical connec-
tivity C = ���kakb for every possible protein
pair (a,b). Protein pairs were then sorted
according to C and examined for whether
they were directly linked by a genetic inter-
action. As shown in Figure 1A, the fre-
quency of genetic interaction increases
markedly with physical connectivity. For
example, genetic interactions were roughly
16-fold as likely to occur between proteins
with C = 12 versus C = 4 interactions.

This result has two interpretations: first,
highly connected protein ‘hubs’ in the
physical network tend to genetically inter-
act with each other; or second, hubs genet-
ically interact with many partners, regard-
less of their partners’ physical connectivi-
ties (Fig. 1B). To investigate this further, we
defined proteins having more than h physi-
cal interactions as ‘hubs’ and looked at the
frequencies with which hubs genetically
interact with other hubs versus non-hubs.
Indeed, genetic interactions between hubs
occur more frequently than expected, and
this bias becomes more pronounced at
larger hub sizes h (Fig. 1C). Therefore, not
only are single highly connected proteins
essential to the cell7, but so are combina-
tions of such proteins. It is also interesting
that this bias toward genetic interactions
between hubs contrasts with a previously
identified bias against physical interactions
between hubs8, indicating that while there
is some correlation between the physical
and genetic networks, they do not coincide.

Genetic interactions are often used to
screen for genes acting in a common cellu-
lar function. However, it seems plausible
that the tendency toward genetic interac-
tions between physical network hubs is due
not to common functionality, but rather to
the additive effects of disrupting central
components of two functions that may be
very different. Geneticists may therefore
wish to exclude these genetic interactions
from further analysis. Conversely, genetic
interactions among lower-connectivity
proteins are less frequent and may indicate
proteins that cooperate directly through
physical interactions in the network. It is
these genetic interactions that, when priori-

tized for further study, will perhaps provide
clearer insight into biological pathways.
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In this regard, it is noteworthy that the
Alliance for Cellular Signalling (AfCS;
http://www.cellularsignaling.org/) has
been launched to “answer questions about
signaling networks…to facilitate quantita-
tive modeling” on two types of cell para-
digms: B lymphocytes and cardiac
myocytes9. I believe that the ability of
researchers in developing countries to
access this information should be exploited
to allow their recruitment in efforts to
determine how the entire signal transduc-
tion machinery is built and connected in
those particular types of important cells.

While scientists and physicians in devel-
oping countries face logistical problems in
obtaining materials in traditional research,
they can take advantage of the emerging
plethora of biomedical knowledge avail-
able over the Internet. Through a synthesis
of genomics, proteomics, signal transduc-
tion, network theory, computing science,
non-linear dynamics, and clinical practice,
such groups could design appropriate algo-
rithms to visualize dynamic maps of the
molecular networks that underlie clinical
manifestations of disease (in a similar
manner to the integration of gene circuits
reviewed by Hasty et al.10). These, in turn,
could be used as important aids in early
diagnosis, prognosis, and risk manage-
ment. In this respect, the Lymphoma/
Leukemia Molecular Profiling Project has
already shown the validity of using a set of
genes, or ‘gene expression signatures’ as
molecular predictors of certain types of
cancer, such as diffuse large-B-cell lym-
phoma11.

With the above developments in mind,
and the aid of a national database compiled
by my colleague Manuel Bemporad12, Dr.
Bemporad and I have identified the most
productive physicians, molecular biolo-
gists, biochemists, theoretical physicists,
mathematicians, and computer scientists,
and asked them to form three types of
interconnected networks: CliniRed, BioRed,
and CompuRed. These networks have two
aims: first, to analyze the wealth of data
coming from international research pro-
grams, such as those mentioned above, to
select those molecular markers that are rel-
evant to clinical practice; and second, to
organize a long-term project to develop the
tools that will make possible this new type
of medicine in the country.

We hope that in this way, we will offer to
some of our very best talent an opportuni-
ty to do advanced applied research on a
very pertinent goal—the fight against the
major causes of morbidity and mortality in
Venezuela; and all this with an unlimited
supply of knowledge and techniques com-
ing from abroad at no cost.
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Developing countries and systems biology

To the editor:
Systems biology is taking root as an inte-
grating tool to comprehend how the
genome and proteome respond to environ-
mental changes through the signal-trans-
duction mechanisms of the cell1. The devel-
opment of mathematical and computation-
al tools in such approaches represents a sig-
nificant opportunity for researchers in
developing countries.

The combined laboratories of Gifford
and Young have recently shown the feasibil-
ity of a computational approach to correct-
ly assign all the regulators of a complex net-
work, such as the cell cycle2. These authors
were able to devise an algorithm to auto-
matically reconstruct the corresponding
transcriptional regulatory architecture
without previous knowledge of the mole-
cules involved. This work was possible
because the transcriptional mechanism that
governs the cell cycle follows the same type
of ‘network motifs’ or patterns of intercon-
nections that pertain to a wide range of
complex networks encompassing ecological
systems, neuronal synapses, electric cir-
cuits, and the Internet, among others3.

These so called scale-free networks, dis-
play a topology conforming to a power-law
distribution where very few nodes become
hubs dominating the entire network by
attaching themselves to others that are
already well interconnected4. The fact that
besides the transcriptional network, the
genome5, proteome6, metabolome7, and the
physiome8 all follow a power-law makes it
likely that an effort to name all the cellular
signal-transduction machinery will also
follow suit and be amenable to study with
these new mathematical and computational
tools.
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