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Abstract

Background: The study of complex biological networks and prediction of gene function has
been enabled by high-throughput (HTP) methods for detection of genetic and protein
interactions. Sparse coverage in HTP datasets may, however, distort network properties and
confound predictions. Although a vast number of well substantiated interactions are recorded
in the scientific literature, these data have not yet been distilled into networks that enable
system-level inference.

Results: We describe here a comprehensive database of genetic and protein interactions,
and associated experimental evidence, for the budding yeast Saccharomyces cerevisiae, as
manually curated from over 31,793 abstracts and online publications. This literature-curated
(LC) dataset contains 33,311 interactions, on the order of all extant HTP datasets combined.
Surprisingly, HTP protein-interaction datasets currently achieve only around 14% coverage of
the interactions in the literature. The LC network nevertheless shares attributes with HTP
networks, including scale-free connectivity and correlations between interactions, abundance,
localization, and expression. We find that essential genes or proteins are enriched for
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Introduction
The molecular biology, biochemistry and genetics of the

budding yeast Saccharomyces cerevisiae have been intensively

studied for decades; it remains the best-understood

eukaryote at the molecular genetic level. Completion of the

S. cerevisiae genome sequence nearly a decade ago spawned

a host of functional genomic tools for interrogation of gene

and protein function, including DNA microarrays for global

gene-expression profiling and location of DNA-binding

factors, and a comprehensive set of gene deletion strains for

phenotypic analysis [1,2]. In the post-genome sequence era,

high-throughput (HTP) screening techniques aimed at

identifying novel protein complexes and gene networks

have begun to complement conventional biochemical and

genetic approaches [3,4]. Systematic elucidation of protein

interactions in S. cerevisiae has been carried out by the two-

hybrid method, which detects pair-wise interactions [5-7],

and by mass spectrometric (MS) analysis of purified protein

complexes [8,9]. In parallel, the synthetic genetic array

(SGA) and synthetic lethal analysis by microarray (dSLAM)

methods have been used to systematically uncover synthetic

lethal genetic interactions, in which non-lethal gene

mutations combine to cause inviability [10-13]. In addition

to HTP analyses of yeast protein-interaction networks,

initial yeast two-hybrid maps have been generated for the

nematode worm Caenorhabditis elegans, the fruit fly

Drosophila melanogaster and, most recently, for humans

[14-17]. The various datasets generated by these techniques

have begun to unveil the global network that underlies

cellular complexity.

The networks implicit in HTP datasets from yeast, and to a

limited extent from other organisms, have been analyzed

using graph theory. A primary attribute of biological

interaction networks is a scale-free distribution of connec-

tions, as described by an apparent power-law formulation

[18]. Most nodes - that is, genes or proteins - in biological

networks are sparsely connected, whereas a few nodes,

called hubs, are highly connected. This class of network is

robust to the random disruption of individual nodes, but

sensitive to an attack on specific highly connected hubs [19].

Whether this property has actually been selected for in

biological networks or is a simple consequence of multi-

layered regulatory control is open to debate [20]. Biological

networks also appear to exhibit small-world organization -

namely, locally dense regions that are sparsely connected to

other regions but with a short average path length [21-23].

Recurrent patterns of regulatory interactions, termed motifs,

have also recently been discerned [24,25]. In conjunction

with global profiles of gene expression, HTP datasets have

been used in a variety of schemes to predict biological

function for characterized and uncharacterized proteins

[3,26-32]. These initial network approaches to system-level

understanding hold considerable promise.

Despite these successes, all network analyses undertaken so

far have relied exclusively on HTP datasets that are

burdened with false-positive and false-negative interactions

[33,34]. The inherent noise in these datasets has compro-

mised attempts to build a comprehensive view of cellular

architecture. For example, yeast two-hybrid datasets in

general exhibit poor concordance [35]. The unreliability of

such datasets, together with the still sparse coverage of

known biological interaction space, clearly limit studies of

biological networks, and may well bias conclusions

obtained to date.

A vast resource of previously discovered physical and genetic

interactions is recorded in the primary literature for many

species, including yeast. In general, interactions reported in

the literature are reliable: many have been verified by

multiple experimental methods and/or more than one

research group; most are based on methods of known

sensitivity and reproducibility in well controlled experiments;

most are reported in the context of supporting cell

biological information; and all have been subjected to the

scrutiny of peer review. But while publications on individual

genes are readily accessed through public databases such as

PubMed, the embedded interaction data have not been

systematically compiled in a searchable relational database.

The Yeast Proteome Database (YPD) represented the first

systematic effort to compile protein-interaction and other

11.2 Journal of Biology 2006, Volume 5, Article 11 Reguly and Breitkreutz et al.                                                          http://jbiol.com/content/5/4/11

Journal of Biology 2006, 5:11

interactions with other essential genes or proteins, suggesting that the global network may be
functionally unified. This interconnectivity is supported by a substantial overlap of protein and
genetic interactions in the LC dataset. We show that the LC dataset considerably improves
the predictive power of network-analysis approaches. The full LC dataset is available at the
BioGRID (http://www.thebiogrid.org) and SGD (http://www.yeastgenome.org/) databases.

Conclusions: Comprehensive datasets of biological interactions derived from the primary
literature provide critical benchmarks for HTP methods, augment functional prediction, and
reveal system-level attributes of biological networks.



data from the literature [36]; but although originally free of

charge to academic users, YPD is now available only on a

subscription basis. A number of important databases that

curate protein and genetic interactions from the literature

have been developed, including the Munich Information

Center for Protein Sequences (MIPS) database [37], the

Molecular Interactions (MINT) database [38], the IntAct

database [39], the Database of Interacting Proteins (DIP)

[40], the Biomolecular Interaction Network Database

(BIND) [41], the Human Protein Reference Database

(HPRD) [42], and the BioGRID database [43,44]. At

present, however, interactions recorded in these databases

represent only partial coverage of the primary literature. The

efforts of these databases will be facilitated by a recently

established consortium of interaction databases, termed the

International Molecular Exchange Consortium (IMEx) [45],

which aims both to implement a structured vocabulary to

describe interaction data (the Protein Standards Initiative-

Molecular Interaction, PSI-MI [46]) and to openly

disseminate interaction records. A systematic international

effort to codify gene function by the Gene Ontology (GO)

Consortium also records protein and genetic interactions as

functional evidence codes [47], which can therefore be used to

infer interaction networks [48].

Despite the fact that many interactions are clearly

documented in the literature, these data are not yet in a

form that can be readily applied to network or system-level

analysis. Manual curation of the literature specifically for

gene and protein interactions poses a number of problems,

including curation consistency, the myriad possible levels of

annotation detail, and the sheer volume of text that must be

distilled. Moreover, because structured vocabularies have

not been implemented in biological publications, auto-

mated machine-learning methods are unable to reliably

extract most interaction information from full-text sources

[49]. Budding yeast represents an ideal test case for

systematic literature curation, both because the genome is

annotated to an unparalleled degree of accuracy and

because a large fraction of genes are characterized [50].

Approximately 4,200 budding yeast open reading frames

(ORFs) have been functionally interrogated by one means

or another [51]. At the same time, because some 1,500 are

currently classified by the GO term ‘biological process

unknown’, a substantial number of gene functions remain

to be assigned or inferred.

Here we report a literature-curated (LC) dataset of 33,311

protein and genetic interactions, representing 19,499 non-

redundant interactions, from a total of 6,148 publications

in the primary literature. The low overlap between the LC

dataset and existing HTP datasets suggests that known

physical and genetic interaction space may be far from

saturating. Analysis of the network properties of the LC

dataset supports some conclusions based on HTP data but

refutes others. The systematic LC dataset improves predic-

tion of gene function and provides a resource for future

endeavors in network biology.

Results
Curation strategy
A search of the available online literature in PubMed yielded

53,117 publications as of November 1, 2005 that potentially

contain interaction data on one or more budding yeast genes

and/or proteins. A total of 5,434 of the 5,726 currently

predicted proteins [52] are referred to at least once in the

primary literature. All abstracts associated with yeast gene

names or registered aliases were retrieved from PubMed and

then examined by curators for evidence of interaction data.

Where available, the full text of papers, including figures and

tables, was read to capture all potential protein and genetic

interactions. A curation database was constructed to house

protein-protein, protein-RNA and gene-gene interactions

associated with all known or predicted proteins in

S. cerevisiae, analogous in structure to the BioGRID

interaction database [43,53]. Each interaction was assigned a

unique identifier that tracked the source, date of entry, and

curator name. To expedite curation, we recorded the direct

experimental evidence for interactions but not other

potentially useful information such as strain background,

mutant alleles, specific interaction domains or subcellular

localization. Interactions reported in reviews or as

unpublished data were not considered sufficiently validated.

Protein-RNA and protein-DNA associations detected by

genome-wide microarray methods were also not included in

the dataset. Finally, we did not record interactions between

S. cerevisiae genes/proteins and those of another species,

even when such interactions were detected in yeast.

Abstracts were inspected with efficient web-based tools for

candidate interaction data. Of the initial set of 53,117

abstracts, 21,324 were immediately designated as ‘wrong

organism’, usually because of a direct reference to a yeast

homolog or to a yeast two-hybrid screen carried out with a

non-yeast bait (that is, the capturing protein) and library.

This class of incorrect assignment is not easily recognized by

text-mining algorithms but is readily discerned by curators.

Of the remaining 31,793 yeast-specific abstracts, 9,145 were

associated with accessible electronic versions of the full paper,

which were then manually curated for protein and genetic

interactions by directly examining data figures and tables.

We defined a minimal set of experimental method categ-

ories to describe the evidence for each recorded interaction

(see Materials and methods for definitions). Physical
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interactions were divided into eight in vivo categories

(affinity capture-mass spectrometry, affinity capture-western,

affinity capture-RNA, co-fractionation, co-localization, co-

purification, fluorescence resonance energy transfer (FRET),

two-hybrid) and six in vitro categories (biochemical activity,

co-crystal structure, far western, protein-peptide, protein-

RNA, reconstituted complex). In each of these categories,

except co-purification, the protein-interaction pair

corresponded to that described in the experiment, typically

as the bait and prey (that is, the capturing protein and the

captured protein(s), respectively). For co-purification, in

which a purified intact protein complex is isolated by

conventional chromatography or other means, a virtual bait

was assigned (see Material and methods). A final

biochemical interaction category, called co-purification, was

used to indicate a purified intact protein complex isolated

by conventional chromatography or other means. Genetic

interactions were divided into eight categories (dosage

growth defect, dosage lethality, dosage rescue, phenotypic

enhancement, phenotypic suppression, synthetic growth

defect, synthetic lethality, synthetic rescue). Genetic

interactions with RNA-encoding ORFs were not scored

separately from protein-coding genes. In rare instances in

which an interaction could not be readily assigned a protein

or genetic interaction category, the closest substitute was

chosen and an explanation of the exact experimental

context was noted in a free-text qualification box.

Curated datasets
Two protein-interaction (PI) datasets were constructed as

follows. Five extant HTP protein-interaction studies [5-9],

which are often used in network analysis, were combined

into a dataset termed HTP-PI that contained 11,571 non-

redundant interactions. All other literature-derived protein

interactions formed a dataset termed LC-PI that contained

11,334 nonredundant interactions. The combined LC-PI

and HTP-PI datasets contain 21,281 unique interactions

(Table 1). The 428 discrete protein-RNA interactions

recorded in the curation effort were not included in the

LC-PI dataset, and were not analyzed further. Although a

number of recent publications reported protein interactions

that might have been classified as HTP-like, it was not

possible to rigorously separate intertwined data types in

these publications, and so by default we added all such

interactions to the LC-PI dataset (see below).

Two genetic interaction (GI) datasets were constructed as

follows. All data derived from systematic SGA and dSLAM
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Table 1

Literature-curated datasets

Datasets Number of total nodes Number of edges Number of baits Number of publications

Total interactions (includes self edges, multiple sources/experimental systems, RNA genes)

HTP-PI 4,478 12,994 2,387 5

LC-PI 3,342 22,250 2,047 3,342

HTP-GI 1,454 8,111 260 39

LC-GI 2,689 11,061 1,854 3,798

Total 5,467 54,416 3,728 6,170

Total LC (LC-PI+LC-GI) 3,904 33,311 2,635 6,148

Filtered interactions (excludes self edges, redundant edges, RNA genes in LC-PI)

HTP-PI 4,474 11,571 2,353 5

LC-PI 3,289 11,334 1,969 3,202

Total PI (HTP-PI+LC-PI) 5,107 21,281 3,254 3,207

HTP-GI 1,454 6,103 260 39

LC-GI 2,689 8,165 1,854 3,796

Total GI (HTP-GI+LC-GI) 3,258 13,963 1,923 3,826

Total (Total PI + Total GI) 5,438 *35,244 3,665 5,977

Total LC (LC-PI+LC-GI) 3,863 *19,499 2,569 5,956

*Values represent the sums of the respective datasets (that is, overlap between PI and GI not removed).



approaches were grouped into a single dataset termed HTP-

GI that contained 6,103 nonredundant interactions. This

designation was possible because each SGA or dSLAM

screen is carried out on a genome-wide scale using the same

set of deletion strains [10,12,13]. We note that most SGA

and dSLAM genetic interactions reported to date have been

independently validated by either tetrad or random spore

analysis. All other genetic interactions determined by

conventional means were combined to form a dataset

termed LC-GI dataset that contained 8,165 nonredundant

interactions. The combined LC-GI and HTP-GI datasets

contain 13,963 unique interactions (Table 1).

The analyses reported below were performed on the

1 November, 2005 versions of the LC-PI, HTP-PI, LC-GI,

and HTP-GI datasets, which are summarized in Figure 1 and

Table 1 (see Additional data file 1 for a full description of

the datasets). For all analyses, the datasets were rendered as

a spoke model network, in which the network corresponds

directly to the minimal set of binary interactions defined

by the raw data, as opposed to an exhaustive matrix

model representation, in which all possible pair-wise

combinations of interactions are inferred [34].

Curation fidelity
To benchmark our curation effort, we assessed the overlap

between the LC interaction dataset and interactions housed

in the MIPS, BIND, and DIP databases [37,40,41]. Inter-

actions attributed to 1,773 publications that were shared

between at least one of these databases and the LC dataset

were reinvestigated in detail. Depending on the particular

comparison dataset, the false-negative rate for the LC

dataset ranged from 5% to 20%, whereas the false-negative

rates for other datasets varied from 36% to 50% (see

Additional data files 2 and 3). To estimate our curation

fidelity more precisely, 4,111 LC interactions between 1,203

nodes in a recently defined network termed the filtered

yeast interactome (FYI) [54] were re-examined interaction-

by-interaction and found to contain curation errors at an

overall rate of around 4% (see Additional data file 3). All

errors and missing interactions detected in these

comparative analyses were corrected in the final dataset.

Discordances between the different datasets underscore the

need for parallel curation efforts in order to maximize

curation coverage and accuracy.

Overview of the LC dataset
The final LC dataset contains 33,311 physical and genetic

interactions, representing 19,499 nonredundant entries

derived from 6,148 different publications. The total size of

the LC dataset exceeds that of all combined HTP datasets

published before 1 November, 2005 (Figure 1a). The rate of

growth of publications that document interactions in

budding yeast has seemingly reached a plateau of about 600

publications per year, while the total number of interactions

documented per year has on average continued to increase

(Figure 1b). Protein interactions were supported mainly by

three experimental methods: affinity capture with mass

spectrometric detection, affinity capture with western blot

detection, and two-hybrid assays (Figure 1c). In addition,

258 protein complexes were biochemically purified,

minimally representing 1,104 interactions (see Additional

data file 1 for a list of purified complexes). More arduous

techniques such as FRET and structure determination of

protein complexes accounted for far fewer interactions.

Genetic interactions were documented by a spectrum of

techniques, with some propensity towards synthetic lethal

and dosage rescue interactions (Figure 1c). The numbers of

interactions in each experimental method category are listed

in Additional data file 1.

The distinction between HTP surveys and meticulous

focused studies cannot be made by a simple cutoff in the

number of interactions. Genetic interactions are usually

robust, so the distinction by interaction number is less

critical. Protein interactions on the other hand are

inherently more variable, and as a consequence are usually

validated by well controlled experiments in most focused

studies. Approximately 50% of the LC-PI dataset derives

from recent publications that report 50 or more protein

interactions (Figure 1d). In many of these publications,

interactions are interrogated via multiple bait proteins,

typically by mass spectrometric or two-hybrid analysis.

While not all of these interactions are individually validated

in replicate experiments, in most cases there is sufficient

experimental signal (for example, peptide coverage by mass

spectrometry or different interacting fragments by two-

hybrid) and overlap between different experiments that

reasonable confidence is warranted. We designated these

publications as systematic interrogation (SI) to indicate that

most interactions are verified and of reasonable confidence.

Five other publications designated as HTP surveys (HS)

reported single broad screens that contained a total of 870

interactions, including interactions inferred from covalent

modifications such as phosphorylation and conjugation of

ubiquitin-like modifiers (ULMs). Systematic interrogation

and HTP survey data were included in the LC-PI dataset for

the purposes of network analysis below. For future

applications of the dataset, publications that contain SI or

HS interactions, as well as any posttranslational modifica-

tions associated with interactions, are listed in Additional

data file 1. Because all interactions are documented both by

PubMed identifiers and by a structured vocabulary of

experimental evidence, these potentially less well sub-

stantiated interactions or data types can be readily removed

from the dataset if desired.
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Figure 1
Characterization of the LC interaction dataset. (a) The total number of interactions in the LC dataset (left) and standard HTP datasets (right).
Protein-protein interactions, blue; gene-gene interactions, yellow. (b) The number of publications that contain interaction data (red) and the number
of interactions reported per year (light blue). (c) The number of interactions annotated for each experimental method. In this panel and all
subsequent figures, each dataset is color coded as follows: LC-PI, blue; HTP-PI, red; LC-GI, aquamarine; HTP-GI, pink. (d) Number of interactions
per publication in LC-GI and LC-PI datasets. Publications were binned by the number of interactions reported. The total number of papers and
interactions in each bin is shown above each bar.
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Replication and bias of interactions
As all types of experimental evidence for each interaction

were culled from each publication, it was possible to

estimate the extent to which interactions in each dataset

were overtly validated, either by more than one experi-

mental method and/or by multiple publications. Even in

the LC-PI and LC-GI datasets, most interactions were

directly documented only once, with 33% and 20% of

interactions in each respective dataset being reproduced by

at least two publications or experimental methods

(Figure 2a,b). Only a small fraction of any dataset was

validated more than once (Figure 2a). These estimates of

re-coverage are inherently conservative because of the

minimal spoke representation used for each complex. Of

particular importance, interactions that are well

established in an initial publication are unlikely to be

directly repeated by subsequent publications that build on

the same line of enquiry.

It has been noted that persistently cited genes are not more

connected than average, based on HTP networks [55]. To

reveal potential bias in the extent of investigation of any

given node in the LC datasets, we determined the number

of total interactions (that is, including redundant inter-

actions) in excess of connectivity for each node (see

Materials and methods). Within the LC-PI and LC-GI

datasets, it is evident that the more a protein or gene is

studied, the more connections it is likely to exhibit

(Figure 2c). A modest study bias of 23% towards essential

genes was evident in the LC-PI dataset (Figure 2d). Whether

these effects are due to increased coverage upon further

study or the tendency of highly connected proteins to be

studied in more detail is unclear.

Finally, we determined the extent to which evolutionarily

conserved proteins are studied in each dataset. Each dataset

was binned according to conservation of yeast proteins

across seven species using the Clusters of Orthologous

Groups (COG) database [56]. The HTP datasets were

enriched towards nonconserved proteins, whereas the LC

datasets were enriched for proteins conserved across the

seven eukaryotic test species (Figure 2e). This bias probably

reflects the tendency to study conserved proteins, which are

more likely to be essential [57,58].

GO coverage and coherence
To determine how closely protein and genetic interaction

pairs match existing GO descriptors of gene or protein

function, we assessed high-level GO terms represented

within different interaction datasets. The distribution of GO

component, GO function and GO process categories for

each dataset was determined and compared with the total

distribution for all yeast genes (Figure 3a). Given that the

GO annotation for S. cerevisiae is derived from the primary

literature [47], it was not surprising that the LC-PI and

LC-GI datasets showed a similar distribution across GO

categories and terms, including under-representation for the

term ‘unknown’ in each of the three GO categories. In

contrast, the HTP-PI and HTP-GI datasets contained more

genes designated as ‘unknown’, and a corresponding

depletion in known categories. Certain specific GO

categories were favored in the LC datasets, accompanied by

concordance in the rank order of GO function or process

terms between the LC-PI and LC-GI datasets, probably

because of inherent bias in the literature towards subfields

of biology (see also Additional data file 3).

To assess the coherence of each interaction dataset, we then

determined the fraction of interactions that contained the

same high level GO terms for each interaction partner

across each of the GO categories (Figure 3b). By this

criterion, the LC datasets were more coherent than the HTP

datasets. This result reflects the higher false-positive rates in

the HTP datasets, the higher incidence of uncharacterized

genes in HTP datasets and also the potential for genome-

wide approaches to identify new connections between

previously unrelated pathways.

Size estimate of the global protein-interaction network
On the basis of analysis of both two-hybrid HTP datasets

and combined HTP and MIPS datasets, it has been

estimated that there are on average five interaction partners

per protein in the yeast proteome, and that by extrapolation

the entire proteome contains 16,000-26,000 interactions

[59]. Similar estimates of 20,000-30,000 interactions have

been obtained by scaling the power-law connectivity

distribution of an integrated data set of HTP interactions

[34] and by the overlap of the HTP and MIPS datasets [33].

To reassess these estimates based on our LC-PI dataset, we

began with the observation that the current LC-PI network

contains roughly half of all predicted yeast proteins. We

partitioned nodes into two sets, namely those nodes present

in the LC-PI network (called S = seen, S × S defines the LC-PI

dataset) and those nodes absent from the LC-PI network

(called U = unseen). As U is about the same size as S, if the

density of U × U is no more than that of S × S, then U × U

will at most contain around 10,000 interactions. Similarly,

because U × S is twice the size of U × U or S × S, it will

contain 20,000 interactions. The sum total of all

interactions predicted from LC-PI is thus 40,000. This

estimate is subject to two countervailing reservations: the

density of U × U may in fact be lower than for S regions (see

below), while conversely, the current density of S × S may be

an underestimate. The observations that well studied

proteins are more highly connected and that the HTP-PI

datasets undoubtedly contain bona fide interactions not
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Figure 2
Validation of interactions within interaction datasets. (a) The fraction of interactions in each dataset supported by multiple validations (that is,
different publications or types of experimental evidence). (b) The fraction of interactions in each indicated dataset supported by more than one
publication or type of experimental evidence. (c) Better studied proteins or genes, as defined by the number of supporting publications relative to
node connectivity (designated bias, see Materials and methods), tend to be more highly connected within the physical or genetic networks. 
(d) The study bias towards essential genes in each dataset. (e) The distribution of conserved proteins in interaction datasets. Frequency refers to
fraction of the dataset in each bin. Orthologous eukaryotic clusters for seven standard species (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila
melanogaster, Homo sapiens, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Encephalitozoon cuniculi) were obtained from the COG database
[96]. Sc refers to all budding yeast proteins as a reference dataset; non-LC refers to all HTP interactions except those that overlap with the LC
datasets; X refers to yeast genes that were not assigned to any of the COG clusters and contains yeast-specific genes in addition to genes that have
orthologs in only one of the other six species.
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present in S × S suggest that the density of S will certainly

increase with further investigation. Extrapolations based on

either mean node degree or degree distribution of LC-PI

yielded values in the range of 21,000 to 40,000

interactions, again assuming that the density of S × S is

saturating (data not shown).

Coverage in HTP datasets
A primary purpose of compiling the LC dataset was to provide

a benchmark for HTP interaction studies. When each dataset is

represented as a minimal spoke network model [34], the

LC-PI network is of roughly the same size as the HTP-PI

network, yet overlap between the two is only 14% (Figure 4a).
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Figure 3
Distribution of GO terms for genes or proteins involved in genetic and physical interactions compared with genome-wide distribution.
(a) Distribution of indicated GO cellular component, molecular function and biological process terms for nodes in each dataset. Sce refers to the
distribution for all genes or proteins. (b) Fraction of interactions that share common GO terms in each of the three GO categories. High-level GO
annotations (GO-Slim) were obtained from the SGD. The mean shared annotation is significantly higher for LC-PI than for HTP-PI for each of the
three categories (Fisher’s exact test, P < 1 × 10-10).
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Figure 4
Intersection of LC and HTP datasets. (a) Datasets were rendered with the Osprey visualization system [65] to show overlap between indicated LC
and HTP datasets. n, number of nodes; i, number of interactions. (b) Coverage in the HTP physical interaction dataset (collated from five major HTP
studies: Uetz et al. [5], Ito et al. [6], Ito et al. [7], Gavin et al. [9], Ho et al. [8]) overlaps strongly with coverage in the LC dataset. Proteins present
only in the LC dataset were labeled first, followed by proteins present only in the individual HTP datasets. In all plots, a dot represents interaction
between proteins on the x- and y-axes. As the networks are undirected, plots are symmetric about the x = y line. Self interactions were removed.
(c) Overlap of individual HTP datasets with the LC dataset. Dot plots show all interactions from each HTP dataset partitioned according to proteins
that are present in the LC-PI dataset (inside the boxed region) and those that are not (outside the boxed region). ‘Ito’ indicates data from Ito et al. [7].
The protein content is different for each dataset and so ordinates are not superimposable. The number of overlapping interactions between each
HTP dataset and the LC dataset is shown in parentheses. Note that only a small fraction of interactions in each boxed region actually overlaps
with the LC-PI dataset because of the high false-negative rate in HTP data. (d) The number of LC interactions in HTP datasets.
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To visualize the relative coverage of each dataset, dot-matrix

representations of all pairwise interactions in each of the LC

and HTP datasets were created and overlaid on the same

ordinates. As expected, each dataset contains its own

unique set of interactions (see Additional data file 3). To

assess the relative distribution of interactions in the LC-PI

versus HTP-PI datasets, full dot plots for each were

compared, ordered first by proteins in the LC dataset then

by proteins in the HTP dataset (Figure 4b). Interactions in

the LC-PI dataset were uniform with respect to protein

labels; that is, as expected there are no obvious areas of

higher or lower interaction density across the approximately

3,000 proteins in the dataset. In the HTP-PI protein dataset,

however, which contains interactions between 4,478

proteins, there were two distinct regions of interaction

density: a high-density region that corresponded precisely to

proteins defined in the LC-PI dataset (7.3 interactions per

protein in LC-PI) and a low-density region that

corresponded to interactions between proteins not in the

LC-PI dataset (2.8 interactions per protein in HTP-PI). This

indicates that there is a strong bias in interactions detected

by HTP techniques. Analysis of each individual HTP-PI

dataset revealed that bias towards previously studied

proteins is inherent in the Gavin et al. [9], Ho et al. [8] and

Uetz et al. [5] datasets (Figure 4c).

To examine the false-negative rate in HTP-PI datasets, we

directly compared the LC-PI dataset to four extant HTP-PI

datasets, two from large-scale two-hybrid analysis [5,7] and

two from large-scale mass spectrometric identification of

affinity-purified protein complexes [8,9]. Two-hybrid

datasets tend to have a high rate of false-positive hits

[33-35]; consistently, only 2-3% of interactions reported in

two-hybrid screens have been substantiated elsewhere in the

literature to date (Figure 4d). Because affinity-purification

methods directly capture interaction partners in a

physiological context, HTP mass spectrometric datasets

fared somewhat better: around 9% of the 3,402 interactions

reported by Gavin et al. [9] and around 4% of the 3,683

interactions reported by Ho et al. [8] have been documented

elsewhere in the literature (Figure 4d).

Given that the HTP mass spectrometric studies were

initiated with largely nonoverlapping sets of baits that

represented only around 10% of the yeast proteome [8,9],

we also assessed the extent to which these datasets captured

known interactions for successful bait proteins. By this

criterion, the Gavin datasets recapitulated around 30% of

literature interactions, while the Ho dataset recapitulated

around 20% of literature interactions. It was not possible to

compare overall success rates for all HTP datasets because

unsuccessful baits were not unambiguously identified in

three of the studies [5,7,9]. We note that simple benchmark

comparisons of HTP datasets may be confounded by bias in

each dataset. For example, the average clustering coefficient

in the LC-PI network was significantly higher for the set of

baits used in the Gavin versus the Ho datasets (0.43 versus

0.39, P = 0.01) and so a higher rate of recovery is expected

in the former.

The overlap between the LC-GI and HTP-GI datasets was

also minimal at 305 interactions, or less than 5% of either

dataset (Figure 4a,d). In part, this minimal overlap was due

to the different nature of query genes in each dataset. In the

primary literature, genetic interactions have traditionally

been sought with conditional alleles of essential genes,

whereas most HTP screens to date have used nonessential

genes to query the haploid genome-wide deletion set, which

by definition lacks all essential genes [10,12,13]. Consistently,

essential nodes account for less than 6% of the overlap

dataset (see Additional data file 1). In addition, because the

HTP-GI dataset is composed almost entirely of synthetic

lethal interactions (see Additional data file 1), whereas the

LC-GI dataset contains all types of genetic interactions, the

potential for overlap is further minimized. Indeed, about

80% of the overlap was accounted for by LC-GI synthetic

lethal interactions (see Additional data file 1). As synthetic

lethal interaction space is estimated at 200,000 interactions

[12,60], both the LC-GI and HTP-GI datasets still only

sparsely sample the global network.

Finally, various methods have been used to combine and

refine HTP data. These methods substantially improved

overlap with literature-derived interactions. For example, of

about 2,500 interactions in a high-confidence distillation of

HTP datasets, termed the FYI dataset [54], 60% were present

in the LC-PI the dataset, while of the 2,455 interactions in

another high-confidence dataset [33], 32% were present in

the LC-PI dataset. While combined datasets ameliorate the

problem of false-positive interactions, such combinations

are by definition still prone to false-negative interactions.

Degree distribution of the LC network
In a scale-free network, some nodes are highly connected

whereas most nodes have few connections. Such networks

follow an apparent power-law distribution that may arise as

a consequence of preferential attachment of new nodes to

well connected hubs, which are critical for the stability of

the overall network [18,19,21-23]. Connectivity influences

the way a network operates, including how it responds to

catastrophic events, such as ablation of gene or protein

function. Previous analysis of the yeast HTP protein-

interaction dataset suggested that the overall network

behaves in a scale-free manner [22,23]. Both the LC-PI and

the HTP-PI datasets essentially followed a scale-free degree

distribution, either alone or in combination (Figure 5a). We
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Figure 5
Scale-free degree distribution of physical and genetic interaction networks. (a) Frequency-degree plots of LC, HTP and combined networks. Degree
is the connectivity (k) for each node, and frequency indicates the probability of finding a node with a given degree. The linear fit for each plot
approximates a power-law distribution. (b) Rank-degree plots of LC, HTP, and combined networks. Each data point actually represents many nodes
that have the same degree. The fit of the data to either linear (lin) or exponential (exp) curves is indicated for each plot and the coefficient of
determination (R2) is reported in parentheses for each curve fit. Note that although the tail of each distribution exhibits a large deviation, only a
small portion of the network is represented by the highly connected nodes in the tail region. For example, approximately 2% of nodes in the LC-PI
and HTP-PI networks have connectivity greater than 30.
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note, however, that the frequency-degree log plots did not

yield a perfectly linear fit for the LC network, which showed

a higher-than-expected concentration of nodes with connec-

tivity of 10-12. If analysis of the LC network was restricted

to nodes with connectivity less than 20 (which represent

more than 95% of the data), then the log-linear fit was

much better. Similarly, both the LC-GI and HTP-GI genetic

networks, either alone or in combination, followed an

apparent power-law distribution (Figure 5a), as shown

previously for a HTP-GI network [12].

It has been argued recently that the power-law distribution

observed for some biological networks is an effect of

frequency-degree plots and not an intrinsic network

property [61]. To assess this possibility, we reanalyzed each

network as a rank-degree plot and determined goodness of

fit for both linear and exponential curves. In all cases except

LC-GI, a linear fit was better than an exponential fit, as

judged by the coefficient of determination (Figure 5b). Even

for the LC-GI network, a linear fit was nearly as good as an

exponential fit. By the more stringent rank-degree plot

criterion, we thus conclude that the LC and HTP networks

obey a power-law distribution. Finally, it has also recently

been noted that essential nodes form an exponential

distribution in a HTP protein-interaction network [62]. We

consistently find that the essential subnetwork of the LC-PI

dataset is best fitted by an exponential distribution, whereas

the residual nonessential network follows a power law

(N.N.B., unpublished data).

Essentiality, connectivity, and local density
Random removal of nodes in HTP two-hybrid interaction

networks does not affect the overall topology of the

network, whereas deletion of highly connected nodes tends

to break the network into many smaller components [22].

The likelihood that deletion of a given gene is lethal

correlates with the number of interaction partners

associated with it in the network. Thus, highly connected

proteins with a central role in network architecture are three

times more likely to be essential than are proteins with only

a small number of links to other proteins. The LC-PI dataset

exhibited a strong positive correlation between connectivity

and essentiality, whereas the LC-GI dataset exhibited a

modest positive correlation (r = 0.35, P < 1 x 10-91 and

r = 0.11, P < 1 x 10-7, respectively; Figure 6a). Indeed, in the

LC-PI dataset, essential proteins had twice as many inter-

actions on average than nonessential proteins (<k> = 11.7

and 5.2, respectively, P < 1 x 10-100, Mann-Whitney U test).

This analysis buttresses the inference that highly connected

genes are more likely to be essential [19]. Although it has

been suggested that the essentiality is caused by connectivity

[22], this notion seems unlikely because 44% of the

proteins in the LC-PI dataset that were highly connected

(k > 10) were nonessentials. We note that the definition of

essentiality as narrowly defined by growth under optimal

nutrient conditions is open to interpretation. Indeed, if the

definition of essentiality is broadened to include inviability

under more stressful conditions [2], the correlation with

connectivity is substantially weaker, although still statistically

significant (N.N.B., unpublished data).

The propensity of essential proteins to connect more

frequently than nonessential proteins prompted us to re-

examine the issue of essential-essential connections. From

the analysis of HTP datasets, it has previously been reported

that interactions between highly connected proteins appear

to be suppressed [63]. In both the LC-PI and HTP-PI

datasets, however, there was in fact a fourfold enrichment

for essential-essential interactions (Figure 6b). The neighbor-

hoods of essential proteins in both networks were significantly

enriched in essential proteins when compared with the

neighborhoods of nonessential proteins (for essentials

<LC-PI> = 0.64 and <HTP-PI> = 0.48; for nonessentials

<LC-PI> = 0.36 and <HTP-PI> = 0.27; P < 0.01 in each

case). This effect has also recently been adduced from HTP

data [62]. The LC-PI network exhibited a higher local

density of essential interactions than the HTP-PI network as

the fraction of essential neighbors in LC-PI was 35% greater

than in HTP-PI and the fraction of essential proteins that

were surrounded by only essential proteins in LC-PI was

twice that in HTP-PI (Figure 6c). Significantly, comparison

of an LC-PI subnetwork constructed of only essential

proteins to an LC-PI subnetwork of nonessential proteins

revealed that the former was fourfold more dense, more

fully connected (91% versus 74% of nodes in the largest

component), and more tightly connected (average clustering

coefficient of 0.5 versus 0.3, see below). These essential-

essential interactions were likely to be of functional

relevance because the LC-GI dataset exhibited twice as many

essential-essential interactions as expected (Figure 6b).

A primary attribute of each node is its clustering coefficient,

which is a measure of local interaction density, defined as

the percentage of node neighbors that also interact with

each other. A clustering coefficient near 0 occurs when

almost none of the neighbors is connected to each other,

whereas a clustering coefficient near 1 occurs when many

neighbors are connected to each other. Accordingly, proteins

that are part of a multiprotein complex should have a high

clustering coefficient. For all values of clustering coefficient

(except 0), the mean clustering coefficient for the LC-PI

network was greater than that of the HTP-PI network, often

by more than one order of magnitude (Figure 6d, top). The

mean clustering coefficient of the LC-PI network was 34%

larger in magnitude than for the HTP-PI network. Ignoring

the trivial case for nodes of degree 1, which by definition
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have the maximal clustering coefficient of 1 (that is, 26% of

all nodes in LC-PI and 32% of all nodes in HTP-PI), 8% of

all LC-PI nodes with degree higher than 2 were fully

connected (that is, clustering coefficient of 1), compared with

only 2% of all HTP-PI nodes. In contrast, the distributions

of clustering coefficients for the LC-GI and HTP-GI

networks were very similar, as was the average clustering

coefficient (Figure 6d, bottom). For all four networks, the

clustering coefficients were negatively correlated with

connectivity, suggesting that locally dense interactions may

limit the overall number of interaction partners that can

access nodes within these regions.

Overlap between protein and genetic networks
Protein interactions by definition represent connections

within complexes or along pathways, whereas genetic inter-

actions typically represent functional connections of one

sort or another between pathways [4,12,64]. We used the
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Figure 6
Connectivity of essential nodes. (a) Essential nodes tend to be more highly connected in the LC-PI and LC-GI networks. k is the measure of
connectivity. (b) Essential-essential interactions are significantly enriched in the LC-PI and HTP-PI datasets but to a lesser extent in the LC-GI
dataset. NN, nonessential-nonessential pairs; NE, nonessential-essential pairs, EE, essential-essential pairs. (c) The fraction of neighbors that are
essential for LC-PI and HTP-PI networks. Only those nodes with connectivity greater than 3 were considered (n = 1,473 for LC-PI and n = 1,627 for
HTP-PI). Compared with HTP-PI, a larger fraction of the immediate neighborhood of essential proteins in the LC-PI is composed of essential genes.
(d) Clustering coefficient distribution for physical networks (top panel) and genetic networks (bottom panel). Average clustering coefficients and
correlation coefficients were respectively: 0.53 and -0.56 for LC-PI, 0.38 and -0.54 for HTP-PI, 0.50 and -0.61 for LC-GI, 0.53 and -0.67 for HTP-GI.
All correlations were computed using Spearman rank correlation and were statistically significant at P < 1e-100.
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Osprey visualization tool [65] to represent and overlay

protein- and genetic-interaction networks for the LC and

HTP datasets. Given the perceived orthogonality of physical

and genetic interaction space based on HTP studies [12], the

LC-PI and LC-GI networks exhibited an unexpectedly high

degree of overlap, at 12% of all protein interactions and

17% of all genetic interactions (Figure 7a). Of the 1,409

overlap pairs, 442 corresponded to interactions between

essential proteins, while an additional 488 corresponded to

interactions between an essential and a nonessential protein.

The essential gene or protein content of the overlapping set

of interactions was not substantially different from the

input LC-PI and LC-GI datasets, nor was there pronounced

enrichment or depletion for synthetic lethality or any other

type of genetic interaction in the overlap dataset (see

Additional data file 1). In striking contrast, overlap between

the HTP-PI and HTP-GI networks was virtually nonexistent

(Figure 7b), as has been previously noted [12]. This

minimal overlap was due to the properties of the HTP-GI

network, as the HTP-GI overlap with LC-PI was also

minimal (Figure 7c), whereas the overlap between HTP-PI

and LC-GI was significant (Figure 7d). Because essential

genes were not enriched in the LC-PI/LC-GI overlap set, the

under-representation of essential genes in the HTP-GI net-

work [10,12,13] cannot explain the minimal overlap of

HTP-GI with the LC-PI and HTP-PI networks (Figure 7b,c).

It has been noted that proteins that exhibit more physical

interactions tend also to exhibit more genetic interactions

[66]. Indeed, the average number of physical connections

for the nodes in the LC-PI/LC-GI overlap set was 7.7,

compared with 3.2 for the remainder of the nodes in LC-PI.

This feature does not, however, explain the discrepancy

between the LC-GI and HTP-GI datasets because both had

very similar physical connectivity distributions. Interes-

tingly, half (706 of 1,409) of the interactions that do

overlap in the LC-PI and LC-GI datasets mapped back to the

same publication as each other, suggesting that investigators

may often test specific interactions in order to support

initial observations. This bias may help drive overlap

between the LC-PI and LC-GI datasets.

Correlations with protein abundance, localization,
and expression
The abundance of most predicted proteins in yeast has

recently been determined [67]. Comparison of this dataset

with all protein- and genetic-interaction datasets revealed

that highly abundant proteins were more likely to exhibit

detectable physical interactions, whereas low-abundance

proteins were more likely to exhibit genetic interactions

(Figure 8a). Both LC-PI and HTP-PI datasets exhibited a

significant positive bias towards abundant proteins

(r = 0.06, P = 0.0025 and r = 0.19, P = 2 x 10-26 respectively,

Spearman rank correlation), while LC-GI and HTP-GI

exhibited a significant but weak negative bias (r = -0.06,

P = 0.005 and r = -0.11, P = 9 x 10-4 respectively, Spearman

rank correlation). Interestingly, despite a stronger overall

negative correlation with protein abundance, the

systematic genetic analyses in the HTP-GI dataset were
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Figure 7
Overlap of physical and genetic interaction pairs. (a) Overlap between
LC-PI and LC-GI datasets. (b) Overlap between HTP-PI and HTP-GI
datasets. (c) Overlap between LC-PI and HTP-GI datasets. (d) Overlap
between LC-GI and HTP-PI datasets.

LC-PI HTP-GI Overlap

n = 3,289
i = 11,334

n = 98
i = 82

n = 1,454
i = 6,103

n = 2,689
i = 8,165

n = 4,474
i = 11,571

n = 512
i = 385

LC-GI HTP-PI Overlap

LC-PI LC-GI Overlap

n = 3,289
i = 11,334

n = 2,689
i = 8,165

n = 1,163
i = 1,409

n = 4,474
i = 11,571

n = 1,454
i = 6,103

n = 25
i = 13

HTP-PI HTP-GI Overlap

(a)

(b)

(c)

(d)



11.16 Journal of Biology 2006, Volume 5, Article 11 Reguly and Breitkreutz et al.                                                          http://jbiol.com/content/5/4/11

Journal of Biology 2006, 5:11

Figure 8 (see legend on the following page)

0.01 0.02 0.05 0.14 0.37 1.00 2.72 7.39 20.09 54.60 148.410.01 0.02 0.05 0.14 0.37 1.00 2.72 7.39 20.09 54.60 148.41

Acti
n

Bud
_n

ec
k

Cell
_p

er
iph

er
y

Cyto
pla

sm

End
os

om
e

ER

ER_t
o_

Golg
i

Golg
i

Golg
i_t

o_
ER

Golg
i_t

o_
va

cu
ole

Lip
id_

pa
rti

cle

M
icr

ot
ub

ule

M
ito

ch
on

dr
ion

Nuc
lea

r_
pe

rip
he

ry

Nuc
leo

lus

Nuc
leu

s

Per
ox

iso
m

e

Pun
cta

te
_c

om
po

sit
e

Spin
dle

_p
ole

Vac
uo

lar
_m

em
br

an
e

Vac
uo

le

HTP-PI

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

LC-GI

LC-PI

LC-PI LC-GI

HTP-GI

Abundance (x 102)Abundance (x 102)

A
bu

nd
an

ce
 (

x 
10

2 )
A

bu
nd

an
ce

 (
x 

10
2 )

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

170-Inf

76-170

49-76

30-49

21-30

14-21

18-14

4-8

0-4
0-4 4-8 8-14 14-21 21-30 30-49 49-76 170-Inf76-170

170-Inf

76-170

49-76

30-49

21-30

14-21

18-14

4-8

0-4
0-4 4-8 8-14 14-21 21-30 30-49 49-76 170-Inf76-170

170-Inf

76-170

49-76

30-49

21-30

14-21

18-14

4-8

0-4
0-4 4-8 8-14 14-21 21-30 30-49 49-76 170-Inf76-170

170-Inf

76-170

49-76

30-49

21-30

14-21

18-14

4-8

0-4
0-4 4-8 8-14 14-21 21-30 30-49 49-76 170-Inf76-170

Actin
Bud_neck

Cell_periphery
Cytoplasm
Endosome

ER

ER_to_Golgi
Golgi

Golgi_to_ER
Golgi_to_vacuole

Lipid_particle
Microtubule

Mitochondrion
Nuclear_periphery

Nucleolus
Nucleus

Peroxisome
Punctate_composite

Spindle_pole
Vacuolar_membrane

Vacuole

Acti
n

Bud
_n

ec
k

Cell
_p

er
iph

er
y

Cyto
pla

sm

End
os

om
e

ER

ER_t
o_

Golg
i

Golg
i

Golg
i_t

o_
ER

Golg
i_t

o_
va

cu
ole

Lip
id_

pa
rti

cle

M
icr

ot
ub

ule

M
ito

ch
on

dr
ion

Nuc
lea

r_
pe

rip
he

ry

Nuc
leo

lus

Nuc
leu

s

Per
ox

iso
m

e

Pun
cta

te
_c

om
po

sit
e

Spin
dle

_p
ole

Vac
uo

lar
_m

em
br

an
e

Vac
uo

le
Actin

Bud_neck
Cell_periphery

Cytoplasm
Endosome

ER_to_Golgi
Golgi

Golgi_to_ER
Golgi_to_vacuole

Lipid_particle
Microtubule

Mitochondrion
Nuclear_periphery

Nucleolus
Nucleus

Peroxisome
Punctate_composite

Spindle_pole
Vacuolar_membrane

Vacuole

(a)

(b)

ER



more uniformly distributed across protein-abundance bins,

whereas the LC-GI interactions were more strongly

represented in the lowest-abundance bins. This latter

observation suggests that the phenotypes studied by

conventional genetics may be focused on regulatory

processes controlled by low-abundance proteins.

The localization of a large fraction of predicted proteins in

yeast has also recently been determined [68]. Proteins that

interact must at least partially overlap in subcellular

location, and indeed, co-localization may be essential to

drive interaction equilibrium for low-abundance proteins

[69]. This expectation is borne out, as protein

co-localization in the same compartment was significantly

enriched for physical interaction pairs in the LC-PI dataset,

whereas potential inter-compartment interactions were

significantly under-represented (Figure 8b). Similar

conclusions have been drawn previously for HTP datasets

[27]. Although less pronounced, the correlation with

subcellular localization also extended to genetic-interaction

pairs (Figure 8b).

Analysis of HTP datasets in conjunction with genome-wide

expression profiles across many experimental conditions

has demonstrated that physical interaction partners are

encoded by genes that tend to be co-regulated [26,70]. As

judged by the Pearson correlation coefficients (PCC) for a

compendium of 304 different genome-wide expression

profiles [71], this propensity for co-regulation holds in the

LC dataset, for both physical and genetic interactions (see

Additional data file 3). Although highly statistically signifi-

cant, the enrichment for positive over negative expression

correlation was only around 5% for either dataset, such

that this parameter only weakly predicts interactions. We

also assessed the fraction of interaction partners that shared

at least one transcription factor, as defined in genome-wide

location studies [72]. For interaction pairs where each

respective gene is bound by one or more transcription

factors, 24% (397/1,637) of pairs in the LC-PI dataset had

at least one shared transcription factor, compared with

15% (229/1,422) of pairs in the HTP-PI dataset. This

significant difference (Fisher’s exact test, P < 2 x 10-8,

two-tailed) suggested that LC-PI was enriched for

interactions between co-regulated proteins. For the LC-GI

and HTP-GI datasets, shared transcription factors were

found in 16% and 17% of pairs (229/1,422 and 117/672,

respectively), a nonsignificant difference (Fisher’s exact test,

P = 0.45, two-tailed). For all datasets, these transcription

factor co-location values were at least seven standard

deviations from the mean calculated for a similar number

of random pairs, consistent with the tendency of

interacting proteins and genes to be coexpressed.

Predictive power of the LC dataset
Many different approaches have been devised to improve

the power of large-scale datasets to predict gene or protein

functions, including simple combinations of different

datasets, Bayesian integration of multiple data sources, and

inherent network properties of true versus false interactions

[3,14,26-30]. To assess the capability of the LC dataset to

assign new gene functions, we first evaluated the enrich-

ment of known functional relationships in LC-PI pairs by

comparing them with GO process annotations. We com-

pared the LC pairs relative to a variety of HTP genomic data

on the basis of both precision (that is, proportion of results

known to be true positives) and recall (that is, proportion of

known positives identified). The LC-PI dataset returned

approximately 70% precision on about 14,000 pairs, as

compared with 50% precision on 2,500 pairs for the HTP-PI

dataset and 70% precision on only 800 true positive pairs

for coexpression datasets (Figure 9a).

Recent developments in methods for gene or protein

function prediction suggest that probabilistic integration of

diverse genomic data is a powerful approach to the

annotation of uncharacterized genes. Given its precision

and substantial coverage, the LC dataset should augment

these approaches. We have recently constructed a Bayesian

network that integrates affinity precipitation, two-hybrid,

synthetic lethality, and microarray correlation data [28]. The

performance of this network was dramatically improved by

the LC dataset: for a recall of 2% of a standard constructed

from GO terms (about 11,000 pairs), the LC dataset im-

proved prediction precision from 50% to 68% (Figure 9a).
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Figure 8 (see figure on the previous page)
Correlation of interactions with protein abundance and localization. (a) Statistical enrichment of interaction pairs as a function of protein abundance
for each indicated dataset. Protein or gene pairs were separated into bins representing increasing protein abundance as derived from a genome-wide
analysis [67] and shaded according to enrichment over chance distribution (the scale bar indicates the fraction of total interactions, with lighter
regions indicating enrichment). Inf indicates infinity. Raw abundance distributions in each dataset are provided in Additional data file 3. (b) Correlation
ratios of interactions between proteins of different locality for LC-PI and LC-GI networks. Blue regions in the diagonal indicate that interactions
within the locality group are enhanced, while the off-diagonal red regions indicate that interactions of proteins from different localities are
suppressed. Nodes with multiple localities were treated as missing values. Proteome-wide localization annotation [68] was available for 1,404
proteins (around 52%) in the LC dataset. The expected number of interactions was generated using 200 iterations of randomized versions of both
original networks. Random networks were generated by an edge-swapping procedure, which maintains the degree-distribution, and localization
assignments were shuffled among those nodes that had a single locality (the scale bar indicates fold enrichment over chance).



Another important characteristic of any biological dataset is

the diversity of functional groups covered. While precision-

recall curves estimate the total number of true-positive pairs

in the LC dataset, they do not specifically report the number

of distinct biological processes captured by the data. To

measure this diversity, we computed precision-recall statistics

separately on the 146 largest GO terms under the 300-gene

threshold for each data type, and counted the number of

terms that meet a minimum combined precision-recall

score, as measured by the commonly used F-score or har-

monic mean. The diversity of coverage in the LC dataset was

clearly superior to that in any of the HTP datasets

(Figure 9b). For example, the LC dataset covered eight

distinct biological processes at a minimum F-score thres-

hold of 0.32, whereas the next best data type, HTP affinity

precipitation, covered eight GO terms only when the F-score

threshold was relaxed to 0.15. This increased diversity is an

important consideration in functional prediction because

the limiting factor in such analyses is often incomplete data.

Prediction and coverage of protein complexes
A variety of computational approaches have been devised to

infer protein complexes from partial interaction datasets

[31,73-75]. We used the PathBLAST network alignment tool

to identify prospective protein complexes in the combined

LC-PI and HTP-PI networks as subnetworks of interactions

that were significantly more densely connected than would

be expected in randomized versions of the same network

[31]. This method predicted a total of 539 yeast protein

complexes in addition to (and excluding) the 258 definitive

biochemically purified complexes already present in the

LC-PI dataset (see Additional data file 1). The relative

contributions of LC-PI versus HTP-PI data to the predicted

complexes were assessed by counting interactions donated

from each dataset (Figure 10a). As shown, the LC-PI dataset

contributed the majority of interactions that formed the

predicted complexes; thus, LC interactions show a greater

tendency to cluster into complex-like structures. As another

measure of enrichment for complexes in the LC-PI dataset,

we assessed the overlap between the complexes predicted

from local interaction density versus the 258 biochemically

purified gold-standard complexes, again as a function of

contributions from the LC versus HTP datasets (Figure 10b).

Here again, the LC-PI dataset outperformed the HTP-PI

dataset. The minimal overlap of locally dense regions in the

LC-PI and HTP-PI datasets was also evident visually in two-

dimensional hierarchical clustering maps of the combined

datasets (see Additional data file 3).

Pathway conservation
The predicted core proteome is substantially conserved across

eukaryotes. For example, 37% of yeast proteins have

identifiable orthologs in humans [76]. This concept has

been recently extended to identify conserved protein

pathways [31]. We assessed the ability of the LC-PI dataset

to augment these pathway predictions, based on the current

fly protein-interaction network of 20,720 unique inter-

actions between 7,038 proteins in FlyBase [77]. We again

searched the combined LC-PI and HTP-PI yeast networks

for densely connected subnetworks suggestive of protein

complexes, but in addition we made the requirement that
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Figure 9
The LC dataset augments functional predictions. (a) Evaluation of
curated literature against GO biological process as a standard.
Comparisons of enrichment for functional relationships in LC dataset
versus a variety of HTP datasets as scored against GO biological
process are shown as the individual data points. The effect of the LC
dataset on the predictive power of a Bayesian heterogeneous
integration scheme [28] is shown by the curves. FN, false negatives; FP,
false positives; TP, true positives. (b) Comparison of functional
diversity in LC versus a variety of HTP datasets. The number of distinct
functional groups (GO biological process terms) spanned by the LC
dataset at decreasing levels of precision and recall. One hundred and
forty-six independent GO terms were tested, all with fewer than 300
total annotations. A minimum F-score threshold (harmonic mean of
precision and recall) was plotted against the number of GO terms
needed to achieve that threshold for each of the data types.
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Figure 10 (see legend on the following page)
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the set of proteins in each complex has putative orthologs in

fly that were also densely connected in the fly network. This

process identified 1,412 putative conserved complexes

between yeast and fly (see Additional data file 1). Like the

single-species yeast complexes identified above (Figure 10a),

the LC-PI dataset contributed the majority of interactions in

the complexes conserved between yeast and fly (Figure 10c).

As an example of such predicted complexes, a dense cyto-

skeletal control network in yeast corresponded to a partial

network detected in the fly HTP dataset (Figure 10d). This

orthologous network both buttresses known yeast inter-

actions and suggests possible experiments to probe the

cytoskeletal regulation in the fly. Finally, again based on

the principle that interactions among orthologous genes

are more likely to be true than those among

nonorthologous genes, we used the LC-PI dataset to predict

a set of 338 novel human protein interactions (see

Additional data file 1).

The proteins grouped in a predicted complex are likely to

share a common function. As with individual protein

interactions, such co-association can be exploited to make

high-quality protein functional predictions. We identified

complexes that were already enriched for a particular GO

function and transferred this function to all proteins in that

complex (see Materials and methods). This process yielded

between a hundred and a thousand new GO biological

process annotations over all complexes, depending on

whether HTP-PI or LC-PI data were used to identify

complexes, and whether conserved yeast-only or yeast/fly

complexes were specified (Figure 10e; see also Additional

data file 1). LC-PI interactions resulted in substantially larger

numbers of predictions than did HTP-PI interactions, at a

percent accuracy that was roughly equivalent between the

two (slightly higher for yeast-only complexes, slightly lower

for yeast or fly complexes). Overall, the predictive power of

complexes derived from the LC-PI dataset exceeds those

derived from the HTP interactions.

Discussion
Systematic curation of the S. cerevisiae primary literature

enabled the creation of a comprehensive database that

currently houses a total of 22,250 protein interactions and

11,061 genetic interactions, corresponding to 11,334 and

8,165 nonredundant interactions in the LC-PI and LC-GI

datasets, respectively. This resource represents the distillation

of more than three decades of yeast molecular genetics and

biochemistry, as acquired by individual investigators.

Because of the thorough coverage of the LC dataset, it will

serve as a look-up table for gene and protein interactions

and as a basis for interrogating the properties of biological

networks. As shown above, the LC dataset improves the

prediction of gene function and protein complexes, both

within and between species. The sophisticated molecular

genetics of budding yeast will facilitate definitive tests of

hypotheses generated from analysis of the LC dataset.

Interaction space: overlap between LC and HTP data
Simple comparison of the LC dataset reveals key differences

between experimental data embedded in the literature as a

whole and HTP data. The well known high rate of false-

positive interactions in HTP physical interaction datasets is

an inevitable consequence of nonspecific interactions

inherent to different methods [33,34]. A more unexpected

feature of the HTP datasets perhaps is the high rate of false-

negative interactions in the original HTP datasets, a

parameter that has not been possible to estimate until now.

Thus, the overall overlap between HTP-PI and LC-PI

datasets is only 14%, whereas even the most robust HTP

interaction dataset contains less than 30% of known

interactions for the particular baits studied. In conjunction

with the observation that the better studied proteins or

genes exhibit more interactions, the high false-negative rate

in the HTP data suggests that interaction space may be far

from saturated and that there are many more interactions to

be discovered. The false-negative problem will undoubtedly

be ameliorated by recent dramatic increases in mass
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Figure 10 (see figure on the previous page)
Interactions from the LC dataset dominate the composition of predicted protein complexes. (a) Contribution of HTP-PI and LC-PI data to predicted
protein complexes. Each of the 420 predicted complexes are binned according to the percentage of LC (blue) or HTP (red) interactions it contains.
The two distributions are not exact complements because some interactions are members of both LC-PI and HTP-PI. (b) The overlap of predicted
protein complexes with actual protein complexes as defined by co-purification. For a predicted complex and a gold-standard complex, a hit is scored
when the two sets of proteins produce a Jaccard similarity of � 0.13. Top panel, green bars indicate the percentage of gold-standard complexes hit
by some predicted complex. The sum of the green and yellow bars is the percentage of predicted complexes hit by some gold-standard complex.
Bottom panel, the percentage of proteins in gold-standard complexes represented in all predicted complexes. This gives a rough upper bound on the
percentage of gold-standard complexes that can be hit. (c) Complexes conserved between yeast and Drosophila are enriched in LC-PI interactions.
This histogram is analogous to that shown for yeast-only complexes in Figure 10a. (d) Example of orthology between yeast and fly protein
complexes in a cytoskeletal control network. The high degree of LC-PI interconnections between yeast proteins (orange) validates fly HTP
interactions (blue) and suggests new potential connections to test between fly proteins. Thick lines indicate direct interactions, thin lines indicate
interactions bridged by a common neighbor. Complex layouts were rendered in Cytoscape [97]. (e) Prediction of GO process annotations using
conserved versus yeast-only complexes. Green bars indicate the number of correct predictions and yellow bars indicate the number of incorrect
predictions, the sum of which is the total number of predictions. Complex and pathway prediction was carried out according to [31] and results
were averaged over five rounds of full tenfold cross-validation. 



spectrometer sensitivity [78] and application of more

rigorous HTP approaches [79]. A second unexpected feature

of the HTP datasets is the inherent bias towards previously

studied interactions. This bias appears to derive in part from

bait selection in nonsaturating studies. A final notable

difference between the LC and HTP datasets is the dearth of

genetic interactions in HTP screens that correspond to

physical interactions. The apparent orthogonal relationship

between HTP-PI and HTP-GI networks has been noted

previously and explained on the basis of inter-pathway

genetic interactions [12,64]. The substantial overlap

between genetic and physical interactions observed in the

LC datasets, although perhaps driven by investigator bias,

belies a simple relationship between genetic and bio-

chemical networks.

Similar network properties of LC data and HTP data
The sparse coverage of true interactions in HTP datasets has

numerous implications for previous network analyses,

which of necessity have been based solely on HTP data.

Importantly, four network properties deduced from HTP

studies appear to hold in the LC-derived networks. First, the

overall scale-free topology of biological networks deduced

from HTP studies is supported by the LC dataset, albeit with

regions of less ideal fit. This lack of fit may either reflect the

bias in the LC-PI dataset, which results in enrichment of

proteins with higher connectivity, or may reflect the fact

that biological networks do not perfectly fit a power-law

relationship [61,80]. Although there are relatively fewer

hubs compared with non-hubs in the LC-PI network, this

network nevertheless has significantly more highly connec-

ted hubs than other scale-free networks, such as the HTP-PI

network. Second, the relationship between essentiality and

connectivity also holds in the LC dataset. The large cohort

of connections maintained by essential proteins may be a

consequence of the fact that essential proteins tend to be

more ancient, and have simply gained more interactions by

chance. Third, protein-interaction partners tend to co-

localize in the same subcellular compartment. Fourth, the

modest propensity of protein-interaction partners to be

coexpressed under different conditions is an attribute of

both LC-PI and HTP-PI datasets.

Essential-essential interactions unify the 
cellular network
The fourfold enrichment for essential-essential protein

interactions observed in both the LC-PI and HTP-PI

networks suggests that the global network may be unified

by interactions between essential nodes. Indeed, a highly

connected core of essential proteins with an exponential

degree distribution has recently been noticed in HTP data

[62]. This finding is buttressed by our observations that the

LC-PI essential-essential interaction network is not only

exponentially distributed, but is more dense, more complete

and more connected than its nonessential counterpart.

Although previous analysis of a HTP two-hybrid network

revealed that hub-hub connections are suppressed,

implying that the cellular network is modular [63], this

property appears to be a consequence of the HTP dataset

(N.N.B. and M.T., unpublished data). Our finding that

genetic interactions between essential genes are also twofold

enriched in the LC-GI dataset strongly suggests that

essential-essential interactions are functionally significant.

Consistently, a recent analysis indicates that essential genes

may exhibit up to fivefold more synthetic lethal interactions

than to nonessential genes [60]. The preponderance of

essential-essential interactions has a critical bearing on the

evolution of protein networks. Because essential proteins

evolve more slowly than nonessential proteins [81], it

seems likely that essentials are constrained to slowly

coevolve with other essentials to which they are physically

connected [82,83]. The properties of the global network

may thus be dominated by a phalanx of interlinked

essential hubs that have been co-selected by evolutionary

pressure. This interconnectivity appears to be supported by

the substantial overlap we observe between the LC-PI and

LC-GI networks, a feature that is not evident in the HTP-GI

network [12]. Unlike metabolic networks, which do exhibit

modularity [84], this centralized architecture may not be

readily amenable to interpretation through discrete

categorization of gene and protein function.

Network representation and bias
Static two-dimensional representations of biological net-

works are obviously an abstraction that artificially compresses

temporally and spatially distinct regions of the network.

Although the current LC dataset captures basic data about

physical and genetic interactions, much other information

remains to be extracted and compiled, including quanti-

tative measures of protein and genetic interactions [67,85],

spatio-temporal aspects of network organization [54,68],

protein-DNA interactions [72] and the posttranslational

modifications that modulate many protein interactions

[86]. In addition, more complex attributes such as the

directionality of interactions and functional dependencies

must also be captured in a systematic manner. Much of this

information is contextual in nature and depends on

multiple lines of supporting evidence that is not easily

codified. This information will, however, be crucial for

modeling the dynamics of genetic and protein networks.

For example, relationships extracted from the literature have

recently been used to demonstrate that the budding yeast

cell cycle behaves as a dynamic attractor [87] and to deduce

patterns of information flow in a mammalian neuronal

network [88]. Pathway databases such as Reactome [89] and

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [90]
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have begun to compile this type of information. The LC

dataset will serve as a guidepost for curation of more

complex features, from which more sophisticated global

models can be built.

As noted above and elsewhere, inherent biases in methods

and approaches can compromise any given dataset, whether

it be in limits of detection, a propensity to recover certain

classes of interaction, or study bias in the primary literature

[16,17,75,91]. Comparison of various datasets can reveal

biases, which can then be taken into account in interpre-

tation of network properties. With the advent of systems-

biology approaches, such integrated datasets within the

same study are rapidly becoming the norm and will provide

much needed internal consistency between different

methods [92]. Moreover, as the sensitivity and reliability of

HTP approaches continues to improve, interactions detected

by these methods will dominate biological networks. The

LC dataset will guide such approaches and facilitate the

interpretation of new data.

Future curation
To maximize portability and integration, systematic curation

efforts will require a universal agreed upon structured

vocabulary to describe interactions and associated features.

The Protein Standards Initiative, a work group of the

Human Proteome Organization (HUPO), has recently

developed a molecular interaction record structure, called

PSI-MI, for protein and genetic interaction data [46]. The

PSI-MI format has been adopted by the IMEx consortium of

interaction databases [45], which aims to freely distribute

interaction data. The open exchange of interaction records

between different databases will enable the necessary

comparisons to achieve a curated dataset that is largely error

free. In accord with IMEx guidelines, we are in the process

of mapping our experimental evidence codes to the PSI-MI

format, so that our ongoing curation efforts will conform to

the PSI-MI standard.

Apart from applications in the benchmarking of HTP data-

sets, prediction of protein function and biological network

modeling, systematic curation efforts will prove useful in

other contexts. In particular, interactions curated from the

literature provide a valuable independent means to assess

the coherence of GO annotation. Validated interaction

partners that bear discrepant GO annotations may indicate

either novel biological connections, the need for harmo-

nization of GO terms, or simply outright inconsistencies in

the literature. Comprehensive LC interaction datasets allow

these discrepancies to be readily found and re-evaluated.

Given the considerable efforts involved in the Model

Organism Database (MOD) and GO curation, a strong case

can be made for linked curation of full interaction records,

which already partially overlap with GO evidence codes

[47,48]. We also endorse the concept of author-directed

curation at the time of submission or publication; the

capture of interaction data in simplified records would

greatly augment systematic curation of the literature.

Finally, large manually curated datasets will provide a

critical benchmark for machine-based learning approaches

to automate the curation of the literature [49]. Machine-

assisted approaches, such as the Textpresso literature-search

algorithm [93], will undoubtedly improve curation accuracy

and efficiency.

Conclusions
Comprehensive curation of reliable protein and genetic

interactions from the primary biomedical literature estab-

lishes a critical benchmark for HTP datasets, augments

prediction of gene or protein function and allows inference

of system-level properties of biological networks. The

systematic compilation of publicly available LC interaction

datasets for other model organisms, including humans [42],

will enable further insight into both individual gene

functions and biological network features.

Materials and methods
Literature search and definition of datasets
The PubMed database was searched for relevant publica-

tions using the following criteria: (all yeast ORFs) + (Gene

Name (all aliases)) AND + (Yeast + OR + Saccharomyces +

cerevisiae). We also read an additional 6,543 abstracts/

papers curated by SGD that were missed in the original

search, usually because a gene name was not present in the

abstract. A total of 53,117 abstracts/papers as of 1 November,

2005 were manually curated using custom web-based tools.

The curation system automatically tracked abstracts and/or

full text read by each curator. Abstracts that contained

‘Saccharomyces cerevisiae’ or ‘yeast’ and a gene name but that

were not true S. cerevisiae publications, typically because the

publication described a yeast homolog or two-hybrid inter-

action for another species, were designated ‘Wrong Organism’.

The LC-PI dataset does not include interactions from the

two extant HTP mass spectrometry studies in S. cerevisiae

[8,9] or from the three extant HTP two-hybrid studies [5-7].

These latter five combined studies are referred to as the

HTP-PI dataset. A number of recent publications report

what might be considered HTP data that has been cross-

validated to various extents. These publications, designated

either systematic interrogation (SI) and HTP survey (HS),

were included in the LC-PI dataset for the purpose of

analyses reported here, but may be readily segregated for

future analysis (see Additional data file 1).
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The LC-GI dataset is defined as all interactions derived from

conventional genetic approaches, that is, those not based on

systematic SGA and dSLAM screens of the yeast deletion set

[10,12,13] All genetic interactions from systematic screens

comprise the HTP-GI dataset (see Additional data file 1 for

the list of publications that document HTP-GI data).

Annotation
The experimental methods for physical interactions were

classified as follows:

Affinity capture-MS. The bait protein is affinity captured

from cell extracts by either polyclonal antibody or epitope

tag and the associated interaction partner is identified by

MS methods.

Affinity capture-western. The bait protein is affinity captured

from cell extracts by either polyclonal antibody or epitope

tag and the associated interaction partner is identified by

western blot with a specific polyclonal antibody or a second

epitope tag. This category was also used if an interacting

protein was visualized directly by dye stain or radioactivity.

Biochemical activity. Interaction is inferred from a

biochemical effect of one protein upon another, for

example, GTP-GDP exchange activity or phosphorylation of

a substrate by a kinase.

Co-crystal structure. Interaction is directly demonstrated at

the atomic level by X-ray crystallography.

Co-fractionation. Interaction is inferred from the presence of

two or more protein subunits in a partially purified protein

preparation.

Co-localization. Interaction is inferred from two proteins that

co-localize in the cell by indirect immunofluorescence,

usually in a co-dependent manner. This category also

includes co-dependent association of proteins with

promoter DNA in chromatin immunoprecipitation

experiments.

Co-purification. Interaction is inferred from the

identification of two or more protein subunits in a purified

protein complex, as obtained by classical biochemical

fractionation or by affinity purification and one or more

additional fractionation steps. Because the bait-prey

relationship does not exist for conventional purification, in

those cases where an experimentally tagged bait protein

was not present, a virtual bait was defined as the most

highly connected protein according to other types of

experimental evidence in the dataset. Co-purified

complexes are listed in Additional data file 1.

Far western. Interaction is detected between a protein

immobilized on a membrane and a purified protein probe.

FRET. The close proximity of interaction partners is detected

by fluorescence resonance energy transfer (FRET) between

cyan fusion protein (CFP) and yellow fluorescent protein

(YFP) fusion proteins in vivo.

Protein-peptide. Interaction is detected between a protein and

a peptide derived from an interaction partner. This category

includes phage-display experiments.

Protein-RNA. Interaction is detected between a purified

protein and associated RNA(s) as detected by northern blot

or reverse transcription-PCR. Genome-wide experiments

based on microarray detection were classified as HTP, and

not recorded, unless supporting documentation for specific

interactions was provided.

Reconstituted complex. Interaction is directly detected between

purified proteins in vitro, usually in recombinant form.

Two-hybrid. The bait protein is expressed as a DNA-binding

domain fusion and the prey protein is expressed as a trans-

criptional activation domain fusion and interaction is

measured by reporter gene activation. This category was

also used for two-hybrid variations such as the split-

ubiquitin assay.

The experimental methods for genetic interactions were

classified as follows:

Dosage growth defect. The overexpression or increased dosage

of one gene causes a growth defect in a strain that is

mutated or deleted for another gene.

Dosage lethality. The overexpression or increased dosage of

one gene causes lethality in a strain that is mutated or

deleted for another gene.

Dosage rescue. The overexpression or increased dosage of

one gene rescues the lethality or growth defect of a strain

that is mutated or deleted for another gene.

Synthetic growth defect. Mutations or deletions in separate

genes, each of which alone causes a minimal phenotype but

when combined in the same cell results in a significant

growth defect under a given condition.

Synthetic lethality. Mutations or deletions in separate genes,

each of which alone causes a minimal phenotype but when

combined in the same cell results in lethality under a given

condition.
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Synthetic rescue. A mutation or deletion of one gene rescues

the lethality or growth defect of a strain mutated or deleted

for another gene.

Phenotypic enhancement. The mutation, deletion, or over-

expression of one gene results in enhancement of any

phenotype associated with the mutation, deletion, or over-

expression of another gene.

Phenotypic suppression. The mutation, deletion, or over-

expression of one gene results in the suppression of any

phenotype associated with the mutation, deletion, or over-

expression of another gene.

At this stage of curation, multiple genetic dependencies and

strain background context were not routinely recorded, nor

was the possible directionality of genetic interactions

inferred.

Calculations. To estimate excess publication bias in the

literature dataset, a bias for a protein or gene ν was defined

as the number of interactions ν is part of, minus the connec-

tivity of ν. Thus, if the connectivity of ν is k and ν is seen in

k interactions, then the bias is 0; however, if ν is seen in, for

example, 2k interactions, the bias is 2. Bias was computed

for nodes in each dataset. Fits to power-law curves [18],

expression correlation analyses [26,70], clustering co-

efficients [21], and hierarchical clustering [94] were com-

puted essentially as described. Standard statistical tests were

used throughout.

Functional prediction. We evaluated the enrichment of known

functional relationships in the curated literature and other

HTP data using GO biological process terms as a bench-

mark. Specifically, we compared protein pairs identified in

curation or HTP data to those annotated to the same nodes

in GO. We propagated each biological process annotation

up to its ancestors to ensure a general evaluation base on

the full GO hierarchy. To prevent proteins co-annotated to

very general terms (such as ‘metabolism’) from being

considered true positives, the number of unique anno-

tations per GO term was counted. Because the biological

specificity of each term roughly corresponds to the number

of total annotations, we choose two thresholds to define the

set of positive and negative protein pairs. Protein pairs

whose most specific co-annotation occurs in GO terms of

300 total annotations or less are considered positives, while

pairs whose most specific co-annotation occurs in GO terms

of 1000 total annotations or more are considered negatives.

The positive set spans around 1,600 terms, totaling some

500,000 pairs, and the negative set spans 10 nodes, totaling

around 6 million pairs. The exact choice of GO term size

threshold is not critical. Evaluation results are consistent

for any choices between 150 and 400 genes when the

negative co-annotation term size threshold is fixed at

1,000. Details of predictive methods are provided in

Additional data file 2.

Protein complex and pathway prediction. Identification of

protein complexes was performed using the PathBLAST

network alignment tools, as previously described [31].

Briefly, these methods integrate protein-interaction data

from two species with protein sequence homology to

generate an aligned network, in which each node represents

a pair of homologous proteins (one from each species;

BLAST E-value < 10-7) and each link represents a conserved

interaction. We note that representation of the network as

either a spoke or matrix model does not affect the outcome

of PathBLAST predictions because computations for

conserved complexes include both direct and indirect inter-

actions. That is, proteins that are bridged by a third protein

are automatically linked in the PathBLAST network and

assigned only a slight penalty. PathBLAST is thus robust to

possible incomplete coverage in one network versus

another. Given this design, spoke versus matrix represen-

tation models yield very similar complex predictions and

network topologies.

The PathBLAST network alignment was searched to identify

high-scoring subnetworks, for which the score is based on

the density of interactions within the subnetwork as well as

the confidence estimates for each protein interaction (see

below). The search was then repeated over 100 random

trials, in which the interactions of both networks are re-

assigned while maintaining the same number of inter-

actions per protein, resulting in a distribution of random

subnetwork scores pooled over all trials. Dense subnetworks

that score in the top 1% of this random score distribution

are considered significant and retained as conserved com-

plexes. To minimize redundancy, complexes are filtered

against each other such that if the sets of proteins from any

two complexes overlap by more than 80%, the lower-

scoring complex is discarded. The search for single-species

complexes is identical to the search for conserved com-

plexes except that an individual protein network is

substituted for the network alignment. This process

identifies dense subnetworks constrained by the inter-

actions of one species rather than two. In the fly, confidence

estimates for each interaction were derived using a logistic

regression model similar to that previously described [95];

in yeast, so as not to bias one set of interactions over the

other, interactions were assigned a uniform confidence of

0.99. Given a set of significant protein complexes, these

complexes are used to predict new protein functional

annotations, as follows. A GO functional term f is assigned

to protein P of complex c if: (1) at least five proteins in c are
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already annotated with f; (2) at least 50% of the proteins in

c are annotated with f; and (3) c is enriched for f by a

hypergeometric P-value < 0.01; and (4) f is a sufficiently

specific term at level 4 or deeper in the GO ontology. To

assess the predictive power of significant complexes, we use

tenfold cross-validation. In this procedure, the set of known

GO annotations is partitioned into ten equal subsets, and

each of these is hidden in turn. The fraction of hidden

annotations that is recapitulated using the prediction

algorithm is determined.

For predicted interactions between human proteins, yeast-

human orthologs were stringently identified by reciprocal

best-hit BLAST scores of e-value < 10-10 and sequence identity

of > 50%. Human protein interactions were obtained from

HPRD [42] and human protein sequences from the National

Center for Biotechnology Information (NCBI). For each

interaction in the LC-PI dataset set, if both proteins had a

human ortholog and the interaction between these orthologs

was not reported in HPRD, a predicted interaction was scored.

Distribution, updates and maintenance. The complete LC dataset

is freely available at the BioGRID interaction database [44]

and at the Saccharomyces Genome Database [51]. The LC

dataset will be kept current through monthly updates and

refined through re-curation and community-directed

corrections. In future curation updates, all the above

protein- and genetic-interaction evidence categories will be

mapped to PSI-MI terms [46].

Note added in proof
Two comprehensive surveys of protein interactions, as

determined by mass spectrometric analysis of affinity

purified protein complexes, have recently been reported

[109,110]. The raw dataset in Gavin et al. [109] overlaps

with 21% of  the LC-PI dataset and 29% of the HTP-PI

dataset, while the raw dataset in Krogan et al. [110] overlaps

with 22% of the LC-PI dataset and 14% of the HTP-PI

dataset. The sum total of all HTP-PI data, including recent

data [109,110], overlaps with 34% of the LC-PI dataset.

These comparisons suggest that protein interaction space is

far from saturated in extant datasets.

Additional data files
The following additional data files are available with this

article. Additional data file 1 contains Supplementary

Tables 1-11: Supplementary Table 1, LC and HTP dataset

statistics; Supplementary Table 2, Co-purified complexes in

the LC dataset; Supplementary Table 3, SI/HTP publica-

tions; Supplementary Table 4, Post-translational modifi-

cations associated with interactions; Supplementary Table 5,

Overlap of physical and genetic interaction datasets; Supple-

mentary Table 6, Predicted yeast complexes from yeast

interaction datasets; Supplementary Table 7, Predicted yeast

complexes from yeast and fly interaction datasets; Supple-

mentary Table 8, Novel human predicted human protein

interactions; Supplementary Table 9, Novel GO functional

predictions for yeast proteins; Supplementary Table 10,

Novel GO functional predictions for fly proteins; Supple-

mentary Table 11, Publications documented in the HTP-GI

dataset. Additional data file 2 contains a comparison of the

LC dataset with other curated datasets and details of

functional predictions. Additional data file 3 contains

Supplementary Figures 1-6: Supplementary Figure 1, Curation

benchmarks for the LC dataset; Supplementary Figure 2,

Distribution of terms in GO categories in LC-PI and LC-GI

dataset; Supplementary Figure 3, Relative coverage and

overlap of interaction datasets; Supplementary Figure 4,

Raw distributions of interactions for each indicated dataset

as a function of protein abundance; Supplementary Figure 5,

Expression correlation for interaction pairs in LC versus

HTP datasets; Supplementary Figure 6, Dense regions in the

physical interaction network. Additional data file 4 contains

flat files of the main datasets.
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