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ABSTRACT

Mounting evidence shows that many protein complexes are conserved in evolution. Here
we use conservation to find complexes that are common to the yeast S. cerevisiae and the
bacteria H. pylori. Our analysis combines protein interaction data that are available for
each of the two species and orthology information based on protein sequence compari-
son. We develop a detailed probabilistic model for protein complexes in a single species
and a model for the conservation of complexes between two species. Using these models,
one can recast the question of finding conserved complexes as a problem of searching for
heavy subgraphs in an edge- and node-weighted graph, whose nodes are orthologous pro-
tein pairs. We tested this approach on the data currently available for yeast and bacteria
and detected 11 significantly conserved complexes. Several of these complexes match very
well with prior experimental knowledge on complexes in yeast only and serve for validation
of our methodology. The complexes suggest new functions for a variety of uncharacterized
proteins. By identifying a conserved complex whose yeast proteins function predominantly
in the nuclear pore complex, we propose that the corresponding bacterial proteins function
as a coherent cellular membrane transport system. We also compare our results to two
alternative methods for detecting complexes and demonstrate that our methodology obtains
a much higher specificity.
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1. INTRODUCTION

With the sequences of dozens of genomes at hand and the accumulating information on the
transcriptomes and proteomes of different organisms, a new research paradigm is emerging in

molecular biology. At the core of this paradigm is the comparative analysis of biological properties of
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two or more species, using the wealth of organisms to enhance weak relations and to draw conclusions
on one species, based on available information on other species. Comparative analysis, in the form of
pairwise alignment, is frequently used in predicting protein function and structure. Recently, comparative
approaches have been proven useful in diverse domains, including gene finding (Batzoglou et al., 2000),
motif finding (Loots et al., 2002), cis-regulation (Sharan et al., 2003) and metabolic pathways (Ogata et al.,
2000; Tohsato et al., 2000).

Protein interactions are crucial to cellular function, both in assembling protein machinery and complexes
and in signaling cascades, where protein interactions enable one protein to modify another to transmit
biological information. Recent technological advances enable us for the first time to characterize networks
of protein interactions. Among the most direct and systematic methods for measuring protein interactions
are co-immunoprecipitation (Mann et al., 2001) and the two-hybrid system (Ito et al., 2001) that have
defined large protein–protein interaction networks for several organisms, including S. cerevisiae (Ho et al.,
2002), H. pylori (Rain et al., 2001), C. elegans (Boulton et al., 2001; Li et al., 2004) and D. Melanogaster
(Giot et al., 2003).

The growing information on protein networks for different organisms naturally lends itself to comparative
analysis, which tries to determine the extent to which protein networks are conserved among species and
make use of the discovered conservation to predict novel networks or parts of networks. Mounting evidence
suggests that conserved protein interaction pathways indeed exist and may be ubiquitous: For example,
proteins in the same pathway are typically present or absent in a genome as a group (Pellegrini et al., 1999),
and several hundred protein–protein interactions in yeast have also been identified for the corresponding
protein orthologs in worm (Li et al., 2004; Matthews et al., 2001).

Previously, we have studied the conservation of pathways between the budding yeast S. cerevisiae and
the bacterial pathogen H. pylori by performing a whole-network-based comparison between the protein–
protein interaction maps of the two species (Kelley et al., 2003). Our analysis suggested many similarities
between the two networks, some of which correspond to well-known biological pathways.

Here, we study another aspect of the similarity between the yeast and bacterial protein networks, namely,
the conservation of complexes between the two species. In both the present study and the earlier one, the
goal is to find two sets of proteins, one in yeast and one in bacteria, such that many of the proteins in
each set have orthologous counterparts in the other, there is a high level of interaction among the proteins
in each set, and the patterns of interaction in the two sets are similar. But while the methods of the
earlier study were aimed at finding chainlike patterns of interaction of the type that might occur in signal
transduction pathways, the present study focuses on protein complexes and looks for dense, clique-like
interaction patterns that are conserved in the two species.

At the heart of our analysis is a novel probabilistic model for a protein interaction network in a single
species and a two-species model that combines, in a unified manner, the interaction model of each species
as well as information on the similarity of protein pairs between the two species. This model is used to
construct an orthology graph, whose nodes correspond to pairs of putative orthologous proteins (a protein
may appear in multiple nodes with different orthologs), and whose edges correspond to protein interactions.
The edges of the graph are assigned weights with probabilistic meaning, so that high weight subgraphs
correspond to conserved protein complexes. We propose a practical method to search the orthology graph
for complexes of densely interacting proteins, which is based on forming high weight seeds and extending
them using local search.

We applied our algorithm to data on protein interactions and protein sequences for yeast and bacteria.
The algorithm identified 11 significantly conserved complexes, with sizes ranging between 6 and 20 protein
pairs. Several of these complexes match very well with prior experimental knowledge on complexes in
yeast only and serve for validation of our methodology. The identified complexes suggest new functions
for a variety of uncharacterized proteins. In particular, by identifying a conserved complex whose yeast
proteins function predominantly in the nuclear pore complex, we propose that the corresponding bacterial
proteins function as a coherent cellular membrane transport system. We also compare our results to two
alternative methods for detecting complexes and demonstrate that our methodology obtains a much higher
specificity. In addition, we show the utility of using our probabilistic model for analyzing interaction data
from a single species.

The paper is organized as follows: In Section 2, we present our probabilistic model for comparative
protein interaction data. In Section 3, we describe our algorithm for identifying high-scoring, conserved
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protein complexes. The application to real data and comparison to extant approaches are presented in
Section 4.

A preliminary version of this paper has appeared in the Proceedings of the Eighth Annual International
Conference on Research in Computational Molecular Biology (Sharan et al., 2004).

2. A PROBABILISTIC MODEL FOR PROTEIN COMPLEXES

In this section, we present a probabilistic model for protein interaction data within a single species and
then extend it to two species. Given a dataset of protein interactions for some organism, we translate it into
an interaction graph G, whose vertices are the organism’s interacting proteins, and whose edges represent
pairwise interactions between distinct proteins. Using this formulation, a protein complex corresponds to
a subgraph of G that is typically dense (see, e.g., Fig. 1). Hence, surprisingly dense subgraphs in G may
be suggested as putative protein complexes.

In the case of perfect data, each edge in the interaction graph represents a known interaction, each
nonedge represents a known noninteracting pair, and we are seeking a surprisingly dense subgraph of G.
To this end we formulate a log likelihood ratio model that is additive over the edges and nonedges
of G, such that highly scoring subgraphs would correspond to likely protein complexes. This approach
requires specifying a null model and a protein-complex model for vertex pairs. Similarly to the probabilistic
approach taken by Tanay et al. (2002, 2004), we define the two models as follows: The protein-complex
model, Mc, assumes that every two proteins in a complex interact with some high probability β. In terms
of the graph, the assumption is that two vertices that belong to the same complex are connected by an
edge with probability β, independently of all other information. While our model assumes that a clique
is the ideal structure of a protein complex, other reasonable models could be formulated, such as a “hub”
model, in which all vertices are connected to a center vertex of high degree.

In contrast, the null model, Mn, assumes that each edge is present with the probability that one would
expect if the edges of G were randomly distributed but respected the degrees of the vertices. More precisely,
we let FG be the family of all graphs having the same vertex set as G and the same degree sequence,
and we define the probability of observing the edge (u, v) to be the fraction of graphs in FG that include
this edge. Note that in this way, edges incident on vertices with higher degrees have higher probability.
We estimate these probabilities using a Monte Carlo approach, as described in Section 4. We assume that
all pairwise relations are independent.

A complicating factor in constructing the interaction graph is that we do not know the real protein
interactions, but rather have partial, noisy observations of them. Formally, let us denote by Tuv the event
that two proteins u, v interact, and by Fuv the event that they do not interact. Denote by Ouv the (possibly
empty) set of available observations on the proteins u and v, that is, the set of experiments in which u

and v were tested for interaction and the outcome of these tests. Using prior biological information (see
Section 4.1), one can estimate for each protein pair the probability Pr(Ouv|Tuv) of the observations on
this pair, given that it interacts, and the probability Pr(Ouv|Fuv) of those observations, given that this
pair does not interact. Also, one can estimate the prior probability Pr(Tuv) that two random proteins
interact.

FIG. 1. A protein complex in the yeast interaction graph. Shown is the Skp1-Cdc53/cullin-F-box (SCF) complex,
which is involved in ubiquitin ligation. Each edge denotes a direct interaction between the corresponding proteins. As
shown, this complex induces a clique in the yeast interaction graph.
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Given a subset U of the vertices, we wish to compute the likelihood of U under a protein-complex
model and under a null model. Denote by OU the collection of all observations on vertex pairs in U . Then

Pr(OU |Mc) =
∏

(u,v)∈U×U

P r(Ouv|Mc) (1)

=
∏

(u,v)∈U×U

(P r(Ouv|Tuv, Mc)P r(Tuv|Mc) + Pr(Ouv|Fuv, Mc)P r(Fuv|Mc)) (2)

=
∏

(u,v)∈U×U

(βP r(Ouv|Tuv) + (1 − β)P r(Ouv|Fuv)) (3)

Equation (1) follows from the assumption that all pairwise interactions are independent. Equation (2) is
obtained using the law of complete probability. Equation (3) follows by noting that given the hidden event
of whether u and v interact, Ouv is independent of any model.

It remains to compute Pr(OU |Mn). Since our previous null model depended on having the degree
sequence of the interaction graph, we cannot use it as is. To overcome this difficulty, we approximate the
degree sequence of the hidden interaction graph: Let d1, . . . , dn denote the expected degrees of the vertices
in G, rounded to the closest integer. In order to compute d1, . . . , dn, we apply Bayes’ rule to derive the
expectation of Tuv for any pair u, v given our observations on this vertex pair:

Pr(Tuv|Ouv) = Pr(Ouv|Tuv)P r(Tuv)

P r(Ouv|Tuv)P r(Tuv) + Pr(Ouv|Fuv)(1 − Pr(Tuv))
.

Hence, di = [∑j P r(Tij |Oij )], where [·] indicates rounding.
Our refined null model assumes that G is drawn uniformly at random from the collection of all graphs

whose degree sequence is d1, . . . , dn. This induces a probability puv for every vertex pair (u, v). We can
now calculate the probability of OU according to the null model:

Pr(OU |Mn) =
∏

(u,v)∈U×U

(puvP r(Ouv|Tuv) + (1 − puv)P r(Ouv|Fuv)) .

Finally, the log likelihood ratio that we assign to a subset of vertices U is

L(U) = log
Pr(OU |Mc)

P r(OU |Mn)
(4)

=
∑

(u,v)∈U×U

log
βP r(Ouv|Tuv) + (1 − β)P r(Ouv|Fuv)

puvP r(Ouv|Tuv) + (1 − puv)P r(Ouv|Fuv)
(5)

=
∑

(u,v)∈U×U

log
βP r(Tuv|Ouv)(1 − Pr(Tuv)) + (1 − β)(1 − Pr(Tuv|Ouv))P r(Tuv)

puvP r(Tuv|Ouv)(1 − Pr(Tuv)) + (1 − puv)(1 − Pr(Tuv|Ouv))P r(Tuv)
(6)

where Equation (6) follows by applying Bayes’ rule and cancelling common terms in the numerator and
denominator.

2.1. Two-species conservation model

Consider now the case of data on two species 1 and 2, denoted throughout by an appropriate superscript.
Here we wish to score a conserved complex that is defined by two subsets of proteins, one from each species,
and a many-to-many correspondence associating proteins in one species with their putative orthologous
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proteins in the other species. Consider two subsets U1 = {u1
1, . . . , u

1
k1

} and V 2 = {v2
1, . . . , v2

k2
} and some

many-to-many mapping θ : U1 → V 2 between them. Assuming that the interaction graphs of the two
species are independent of each other, the log likelihood ratio score for these two sets is simply

L(U1, V 2) = log
Pr(OU1 |M1

c )

P r(OU1 |M1
n)

+ log
Pr(OV 2 |M2

c )

P r(OV 2 |M2
n)

.

However, this score does not take into account the degree of sequence conservation among the pairs of
proteins associated by θ . In order to include such information, we have to define a conserved complex
model and a null model for pairs of proteins from two species. Our conserved complex model assumes
that pairs of proteins associated by θ are orthologous. The null model assumes that such pairs consist of
two independently chosen proteins. Let Euv denote the BLAST E-value assigned to the similarity between
proteins u and v, and let huv, h̄uv denote the events that u and v are orthologous, or nonorthologous,
respectively. The likelihood ratio corresponding to a pair of proteins (u, v) is therefore

Pr(Euv|Mc)

P r(Euv|Mn)
= Pr(Euv|huv)

P r(Euv|huv)P r(huv) + Pr(Euv|h̄uv)P r(h̄uv)
.

Using Bayes’ rule, we can derive a simpler expression, Pr(huv |Euv)
P r(h)

, where Pr(h) is the prior probability
that two proteins are orthologous.

Thus, the complete score of U1 and V 2 under the mapping θ is

Sθ (U
1, V 2) = L(U1, V 2) +

k1∑

i=1

∑

v2
j ∈θ(u1

i )

log
Pr(hu1

i v
2
j
|Eu1

i v
2
j
)

P r(h)
.

3. SEARCHING FOR CONSERVED COMPLEXES

Using the above model for comparative interaction data, the problem of identifying conserved protein
complexes reduces to the problem of identifying a subset of proteins in each species, and a correspondence
between them, such that the score of these subsets exceeds a threshold. In this section, we present our
search strategy.

3.1. The orthology graph

To allow efficient search for conserved protein complexes, we define a complete edge- and node-weighted
orthology graph (extending Kelley et al. [2003]). We focus on yeast and bacteria. Denote by superscripts
p and y the model parameters corresponding to bacteria and yeast, respectively. For two yeast proteins y1
and y2, define

w
y

(y1,y2)
= log

βyP r(Oy1y2 |Ty1y2) + (1 − βy)P r(Oy1y2 |Fy1y2)

p
y
y1y2Pr(Oy1y2 |Ty1y2) + (1 − p

y
y1y2)P r(Oy1y2 |Fy1y2)

.

Similarly, for two bacterial proteins p1 and p2, define

w
p

(p1,p2)
= log

βpP r(Op1p2 |Tp1p2) + (1 − βp)P r(Op1p2 |Fp1p2)

p
p
p1p2Pr(Op1p2 |Tp1p2) + (1 − p

p
p1p2)P r(Op1p2 |Fp1p2)

.

Every pair (y1, p1) of yeast and bacterial proteins is assigned a node whose weight reflects the similarity
of the proteins; that is,

w(y1,p1) = log
Pr(hy1p1 |Ey1p1)

P r(h)
.
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Every two distinct (but possibly overlapping) nodes (y1, p1), (y2, p2) are connected by an edge, which
is associated with a pair of weights (w

y

(y1,y2)
, w

p

(p1,p2)
). If y1 = y2 (p1 = p2), we set the first (second)

weight to 0.
By construction, an induced subgraph of the orthology graph corresponds to two subsets of proteins, one

from each species, and a many-to-many correspondence between them. We define the z-score of an induced
subgraph with vertex sets U1 and V 2 and a mapping θ between them as the log likelihood ratio score
Sθ (U

1, V 2) for the subgraph, normalized by subtracting its mean and dividing by its standard deviation. In
computing the z-score, we assume that node- and edge-weights are independent, so the mean and variance
of Sθ (U

1, V 2) are obtained by summing the sample means and variances of the corresponding nodes and
edges. In detail, the sample mean of a node is the average node weight in the orthology graph; the sample
mean of an edge is the average weight of an edge in the yeast interaction graph plus the average weight
of an edge in the bacterial interaction graph; variances are similarly computed. High-scoring induced
subgraphs in the orthology graph correspond to putative conserved protein complexes.

In order to reduce the complexity of the graph and focus on biologically plausible conserved complexes,
we filter nodes from the graph as follows: We start with an initial set of yeast–bacterial protein pairs,
whose BLAST E-value is smaller than 10−2. We filter from this set pairs for which at least one of the
proteins has no interactions with other proteins in our data. Let S be the resulting set of pairs. Pairs of
proteins that do not belong to S are considered to have low likelihood to take part in a conserved complex
(Kelley et al., 2003). Hence, we consider them only if they satisfy the following condition: For every node
(p, y) �∈ S we check whether there exist two nodes (p1, y1), (p2, y2) ∈ S such that p interacts with p1 and
p2 and y interacts with y1 and y2. If no such nodes exist, we remove (p, y) from the graph. Otherwise,
we retain it. The added nodes serve as “bridges” in the orthology graph between protein pairs, whose
members in each species are not known to directly interact.

3.2. The search strategy

The problem of searching for heavy induced subgraphs in a graph is NP-hard even when considering
a single species where all edge weights are 1 or −1 and all vertex weights are 0 (Shamir et al., 2002).
Thus, in the following, we propose heuristic strategies for searching the orthology graph.

We perform a bottom-up search for heavy subgraphs in the orthology graph. We start from high weight
seeds, refine them by exhaustive enumeration, and then expand them using local search. A similar approach
based on local search was shown to work well in analyzing high-throughput genomic data (Tanay et al.,
2002). Define an edge in the orthology graph as strong if the sum of its associated weights (the edge
weights within each species’ graph) is positive. In the first phase of the search, we compute a seed around
each node v, which consists of v and all its neighbors u such that (u, v) is a strong edge. If the size of
this set is above a threshold (e.g., 10) we iteratively remove from it the node whose contribution to the
subgraph score is minimum, until we reach the desired size. Next, we enumerate all subsets of the seed
that have size at least 3 and contain v. Each such subset is a refined seed on which we apply a local search
heuristic. During the local search we iteratively add a node, whose contribution to the current seed is
maximum, or remove a node, whose contribution to the current seed is minimum, as long as this operation
increases the overall score of the seed. Throughout the process, we preserve the original refined seed and
do not delete nodes from it. For each node in the orthology graph, we record up to k (e.g., 5) heaviest
subgraphs that were discovered around that node.

The resulting subgraphs may overlap considerably, so we use a greedy algorithm to filter subgraphs
whose percentage of intersection is above a threshold. The algorithm iteratively finds the highest weight
subgraph, adds it to the final output list, and removes all other highly intersecting subgraphs (see Section 4
for precise details on the filtering criterion).

In order to evaluate the statistical significance of identified complexes, we compute two kinds of p-values.
The first is based on the z-scores that are computed for each subgraph and assumes a normal approximation
to the likelihood ratio of a subgraph. The approximation relies on the assumption that the subgraph’s nodes
and edges contribute independent terms to the score. The latter probability is Bonferroni corrected for
multiple testing, according to the size of the subgraph. The second p-value is based on empirical runs on
randomized data. The randomized data are produced by random shuffling of the input interaction graphs of
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the two species, preserving their degree sequences, as well as random shuffling of the orthology relations,
preserving the number of orthologs associated with each protein. For each randomized dataset, we use
our heuristic search to find the highest-scoring conserved complex of a given size. We then estimate the
p-value of a suggested complex of the same size, as the fraction of random runs in which the output
complex had larger score.

4. EXPERIMENTAL RESULTS

4.1. Building the orthology graph and parameter estimation

We applied our method to publicly available data on S. cerevisiae and H. pylori. We first constructed a
protein–protein interaction network for each species. The yeast network contained 14,848 pairwise interac-
tions among 4,716 proteins and is based on several systematic studies using protein co-immunoprecipitation
and the yeast two-hybrid system. The bacterial network contained 1,403 pairwise interactions among 732
proteins, which come from a single two-hybrid study (Rain et al., 2001). All interactions were extracted
from DIP (Xenarios et al., ) (August 2003 version).

Protein sequences for both species were obtained from PIR (Wu et al., 2002). Alignments and associated
E-values were computed using BLAST 2.0 (Altschul et al., 1997) with parameters b = 0; e = 1E6; f =
“C;S”; v = 6E5. Unalignable proteins were assigned a maximum E-value of 5. Altogether, 1,909 protein
pairs had E-value below 0.01, out of which 822 pairs contained proteins with some measured interaction.
Adding 1,242 additional pairs with weak homology (as described in Section 3) and removing nodes with
no incident strong edge resulted in a final orthology graph G with 866 nodes and 12,420 edges. In total,
248 distinct bacterial proteins and 527 yeast proteins participated in G.

A good estimation of the probabilistic parameters in the model is a precondition to obtaining meaningful
results. We used the maximum likelihood method of Deng et al. (2003) for estimating the reliability of
observed interactions in yeast. The method provides reliability estimates that depend on the experimental
method used to detect the interaction and on the number of times each interaction was observed. The
reliability of the interactions in H. pylori was estimated at 0.53, which was the same reliability as that
assigned by Deng et al. (2003) to the yeast two-hybrid experiment of Uetz et al. (2000), and was supported
by the estimations given by Rain et al. (2001). We did not use negative information on interactions that
were tested but were not observed, as such data were not readily available.

For each species, the probabilities of observing each particular edge in a random graph with the same
degree sequence was computed by Monte Carlo simulations as follows. Starting from the original interaction
graph, we performed a long series of random edge crosses, each time picking at random two edges
(a, b), (c, d), and replacing them with (a, c), (b, d) (disallowing self-loops), provided that the latter two
edges were not present in the current graph. This process shuffles the edges in the graph while preserving
the degrees of the vertices. The percentage of simulations in which an edge was observed was the estimate
of its probability.

Other parameters related to the edge weights were set as follows: The probability of observing an
interaction in a complex model was set in both yeast and bacteria to β = 0.95. The prior probability of
a true interaction was set to 0.001 in both species based on an estimate of 6,334 proteins and 20,000
true protein–protein interactions in yeast (Bader and Hogue, 2002). The probability of observing a true
interaction was estimated by the ratio of expected number of true interactions that were observed and the
total number of observed interactions. The prior probability of observing some interaction for a given pair of
vertices was set according to the number of interactions and proteins in our data: Pr(O

y
y1,y2 �= ∅) = 0.00135

and Pr(O
p
p1,p2 �= ∅) = 0.00524.

As for the node weights, the parameters of the model were derived as follows: The prior probabil-
ity that a yeast protein and a bacterial protein are orthologous was computed as the frequency of pro-
tein pairs from both species that are in the same COG (cluster of orthologous genes) (Tatusov et al.,
2000), with a value of Pr(h) = 0.001611 (see also Kelley et al. [2003]). The conditional probability
that a pair of proteins are orthologous, given their BLAST E-value, was computed as by Kelley et al.
(2003).
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4.2. Protein complex identification and validation

We applied our algorithm to the yeast–bacteria orthology graph in search of conserved complexes.
Altogether, the algorithm identified 11 nonredundant complexes, whose p-values were smaller than 0.05,
after correction for multiple testing. These complexes were also found to be significant when scored against
empirical runs on randomized data (p < 0.05). The complexes are listed in Table 1. Complex sizes varied
between 6 to 20 protein pairs (20 was the maximum allowed size). Redundant complexes were filtered by
disallowing large overlap between two complexes. Precisely, if 60% of the nodes or 60% of the distinct
proteins in each species were common to two complexes, the one with the poorer p-value was removed.

To validate the results, we first used information about known protein complexes in yeast. We extracted
assignments of yeast genes to complexes from the MIPS database (www.mips.gsf.de/.) (August 2003 ver-
sion). In the orthology graph, 285 nodes had such assignments. We used complex categories at level 3 of
the MIPS complex hierarchy. In total, 18 categories had at least three genes from the orthology graph,
and 6 categories had at least five. For each of our complexes, we computed the largest number of proteins
from a single category, as a fraction of all its categorized members. This fraction is called the purity of the
complex. High purity indicates a conserved complex that corresponds to a known complex in yeast and
serves as a validation for the result. Low purity may indicate either an incorrect complex or a previously
unidentified correct one. Note that most of the predicted complexes also contain proteins that are not known
to belong to any complex in yeast, and so our results suggest additional members in known complexes.

For bacteria, since experimental information on complexes is unavailable, we used functional annotations
instead. We extracted 864 functional annotations of bacterial genes from the TIGR database (www.tigr.org/.).
We used a categorization of H. pylori genes into 14 broad functional classes, spanning 757 nodes in our
orthology graph. Purity was computed in the same manner.

The significant complexes that we have identified exhibit a nice correspondence between the protein
complex annotation in yeast and the functional annotation in bacteria, as presented in Table 1 and further
visualized in Fig. 2. For instance, complex 17 contains proteins from both yeast and bacteria that are
involved in protein degradation, complexes 19 and 28 consist predominantly of proteins that are involved
in translation, and complex 30 includes proteins that are involved in membrane transport.

Our conserved protein complexes suggest new functions for a variety of uncharacterized proteins. For
instance, complex 17 (Fig. 2(a)) defines a set of conserved interactions for the cell’s protein degradation
machinery. Bacterial proteins HP0849 and HP0879 are largely uncharacterized, but their appearance among

Table 1. Conserved Protein Complexes Identified between Yeast and Bacteriaa

Yeast enrichment Bacterial enrichment

ID Score Size Purity Complex category Purity Functional category

1 16.16 12 (12,10) 0.17 (1/6) Translation (1) 0.56 (5/9) DNA-metabolism (19)
8 3.31 6 (6,6) 1.00 (4/4) Respiration (4) 0.33 (2/6) Energy-metabolism (19)

17 141.31 12 (6,12) 0.90 (9/10) Proteasome (9) 0.50 (2/4) Protein-fate (11)
18 37.31 13 (9,13) 0.45 (5/11) Proteasome (9) 0.25 (2/8) DNA-metabolism (19)
19 19.09 6 (6,6) 1.00 (6/6) Translation (10) 0.80 (4/5) Protein-synthesis (31)
25 40.16 10 (8,10) 0.67 (4/6) Replication (4) 0.20 (1/5) DNA-metabolism (19)
28 9.39 9 (9,9) 0.60 (3/5) Translation (10) 0.50 (4/8) Protein-synthesis (31)
30 383.52 20 (12,20) 0.55 (6/11) NUP (6) 0.43 (3/7) Cell-envelope (7)
31 7.21 6 (6,6) 0 — 1.00 (4/4) Protein-synthesis (31)
32 3.05 7 (6,7) 0.67 (2/3) Transcription (3) 0.25 (1/4) Transcription (4)
33 15.68 13 (12,12) 0.40 (2/5) RNA-processing (2) 0.33 (3/9) DNA-metabolism (19)

aFor each complex the table lists its score (− ln p-value, adjusted for multiple testing); its size (with the numbers of distinct
bacterial and yeast proteins in parentheses); purity, as measured using MIPS level 3 categorization of complexes in yeast (with the
number of proteins from the most abundant category, and the total number of categorized proteins in the complex, in parentheses);
the most abundant category (and its size in parentheses); functional purity, as measured using functional annotation in bacteria;
and the most abundant class (with its size among the graph’s annotated proteins in parentheses). A zero enrichment for a complex
indicates that there is at most one annotated member of the complex. Abbreviations: NUP (nuclear pore complex).
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FIG. 2. Conserved protein complexes for proteolysis (panel a), protein synthesis (panels b and d), and nuclear
transport (panel c). Conserved complexes are connected subgraphs within the bacteria-yeast orthology graph, whose
nodes represent orthologous protein pairs and edges represent conserved protein interactions of three types: direct
interactions in both species (solid edges); direct in bacteria but distance 2 in the yeast interaction graph (dark dashed
edges); and distance 2 in the bacterial interaction graph but direct in yeast (light dashed edges). In the algorithm, both
nodes and edges are assigned weights according to the probabilistic model. The number of each complex indicates the
corresponding complex ID listed in Table 1.

yeast and bacterial proteins involved in proteolysis suggests that they also play an important role in this
process. Furthermore, it appears that the yeast proteins Hsm3 and Rfa1 (with known functional roles in
DNA-damage repair) may also be associated with the yeast proteasome. Complexes 19 and 31 (Fig. 2(b,d))
suggest that their component proteins, some of which are uncharacterized, are involved in protein synthesis.

As another example of protein functional prediction, Fig. 2(b) shows a conserved complex which contains
yeast proteins that function in the nuclear pore (NUP) complex. The NUP complex is integral to the eu-
karyotic nuclear membrane and serves to selectively recognize and shuttle molecular cargos (e.g., proteins)
between the nucleus and cytoplasm. Unlike the yeast proteins, the corresponding bacterial proteins are less
well characterized, although three have been associated with the cell envelope due to their predicted trans-
membrane domains. Our results therefore indicate that the bacterial proteins may function as a coherent
cellular membrane transport system in bacteria, similar to the nuclear pore in eukaryotes. Although further
experimentation will be necessary to explore this hypothesis, it is possible that these proteins comprise the
ancestral prokaryotic machinery from which the NUP transport system has evolved.

4.3. Comparisons to extant approaches

We further assessed our approach by comparing its performance to that of two other methods for
identifying complexes in the data. The first method is a noncomparative variant of our algorithm that uses
the protein–protein interactions in yeast only. That is, this variant searches for heavy subgraphs in the yeast
interaction graph, where the edges of the graph are weighted according to the log-likelihood ratio model.
Using this variant to search for protein complexes in yeast is aimed at seeing what is gained (and lost) by
adding the constraint of cross-species conservation. The second method is a variant of the algorithm that
relies on our previous probabilistic model for protein interactions (Kelley et al., 2003). That latter model
is much less involved than the current one: The weight of each vertex in the orthology graph is set to
the logarithm of the probability that the member proteins are orthologous. The weight of an edge is set
to the logarithm of the probability that it represents a true interaction.

We used three measures to compute the quality of the results. All three quantify the similarity between a
given solution and a reference, putatively true, solution. In our case, we used the known complex categories
in yeast as the reference solution, since no knowledge on conserved complexes is available. The Jaccard
measure, which is often used in clustering (cf. Kaufman and Rousseeuw [1990]), uses the notion of mates.
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Table 2. Performance Comparison of Three Algorithms
for Complex Detection

Algorithm Jaccard Sensitivity Specificity

This study 0.32 0.33 0.7
Kelley et al. (2003) 0.22 0.44 0.4
Yeast only 0.33 0.67 0.48

Two proteins are called mates in a solution if they appear together in at least one complex in that solution.
Given two solutions, let n11 be the number of pairs that are mates in both, and let n10 (n10) be the number
of pairs that are mates in the first (second) only. The Jaccard score is n11/(n11 + n10 + n01). Hence, it
measures the correspondence between protein pairs that belong to a common complex according to one
or both solutions. Two identical solutions would get a score of 1, and the higher the score the better the
correspondence. The sensitivity measure quantifies the extent to which a solution captures complexes from
the different yeast categories. It is formally defined as the number of categories for which there was a
complex with at least half its annotated elements being members of that category, divided by the number
of categories with at least three annotated proteins. The specificity measure quantifies the accuracy of the
solution. Formally, it is the fraction of predicted complexes whose purity exceeded 0.5.

A comparison of the performance the three approaches is presented in Table 2. The Jaccard score
is significantly better in our current approach than in Kelley et al. (2003). The sensitivity is lower, as
we capture fewer categories, but the specificity is much higher, so our predicted complexes are much
more accurate. Interestingly, when applying our algorithm using data on yeast only, we get even higher
sensitivity, although again at the cost of specificity. The Jaccard score of this run is comparable to that of
the comparative algorithm. This shows that our new probabilistic model can be effectively used, even for
detecting complexes using interaction data from a single species. Note that we evaluated the results using
data on yeast complexes only, not all of which are expected to be conserved. Still, the use of the bacterial
data significantly improved the specificity of the results.

CONCLUSIONS

We have presented a novel probabilistic model for the detection of conserved complexes among two
species and an algorithm to search for significant complexes. We applied our approach to study the conser-
vation between yeast and bacterial protein interaction networks. We identified highly specific complexes
that were validated using known complexes in yeast and functional annotation in bacteria. Although the
present work has already revealed several conserved biological structures that may have functional sig-
nificance, many refinements and extensions to our method should be explored. Our model can be readily
extended to allow interactions between two domains of the same protein (manifested as self-loops in
the interaction graph). Models in which the primitive elements are domains within proteins, rather than
entire proteins, may be of value. We have used a dense subgraph model that tends to find clique-like
patterns of interaction; variations of the model oriented towards other kinds of interaction patterns are
also of interest. Protocols such as the two-hybrid system detect directed interactions between proteins,
suggesting the use of a directed or mixed interaction graph instead of the current undirected model.
In order to find complexes conserved in k species, where k > 2, our models should be extended to
k-species orthology graphs, in which each node specifies a protein from each of k species; the scoring
of such nodes is an open question. Negative data, indicating the absence of protein–protein interactions,
should be used to supplement the positive data presently used. Co-expression of genes, as measured in
microarray experiments, can also provide indirect evidence for the interaction between the corresponding
proteins. Finally, the current protein–protein interaction data are sparse and unreliable; as the abundance
and quality of the data improve, the predictive power of our methods and their future refinements will be
greatly enhanced.
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