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Here we present a method for extracting candidate cancer pathways from tumor ‘omics data while 
explicitly accounting for diverse consequences of mutations for protein interactions. Disease-causing 
mutations are frequently observed at either core or interface residues mediating protein interactions. 
Mutations at core residues frequently destabilize protein structure while mutations at interface residues can 
specifically affect the binding energies of protein-protein interactions. As a result, mutations in a protein 
may result in distinct interaction profiles and thus have different phenotypic consequences. We describe a 
protein structure-guided pipeline for extracting interacting protein sets specific to a particular mutation. Of 
59 cancer genes with 3D co-complexed structures in the Protein Data Bank, 43 showed evidence of 
mutations with different functional consequences. Literature survey reciprocated functional predictions 
specific to distinct mutations on APC, ATRX, BRCA1, CBL and HRAS. Our analysis suggests that 
accounting for mutation-specific perturbations to cancer pathways will be essential for personalized cancer 
therapy. 

1. Introduction  

Cancer is a complex genetic disease in which the genomes of normal cells accumulate somatic 
mutations. A subset of these mutations confer neoplastic behaviors to cells through disregulation 
of a small number of common pathways1. Identifying the genes that participate in these pathways 
is an important objective in cancer genomics. However, linking somatically altered genes to 
perturbed pathways remains an open problem 2. 

Individual proteins rarely mediate cellular behaviors; instead molecular machines comprising 
multiple proteins arbitrate various intracellular processes. As a result, proteins that interact 
physically within the cell are frequently involved in the same biological activities. This 
phenomenon, sometimes called guilt-by-association, has motivated the development of a variety of 
computational methods to identify disease-specific regions on the human Protein-Protein 
Interaction (PPI) network from molecular measurement data. Ideker et al.3 integrate PPIs with 
mRNA expression data to detect differentially expressed sub-networks of genes, while, NIMMI4 
combines PPI networks with GWAS data to produce sub-networks that are functionally related and 
enriched for genetic variants linked with a trait. HotNet5 maps mutation data onto PPI networks to 
identify sub-networks significantly enriched with cancer causing mutations, and NetBox6 detects 
oncogenic network modules from DNA Copy Number Variants (CNVs), PPIs and signaling 
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pathways. Additionally, Hofree et al.7 combine patient mutation profiles, gene interaction 
networks and PPIs to find network regions that are specific to subtypes of cancer.   

Missense mutations, a class of non-synonymous single nucleotide variants (nsSNVs), cause an 
amino acid substitution, resulting in a subtly different protein sequence. These sequence changes 
can alter protein structure. The resulting consequences for protein activity span the spectrum from 
neutral to completely disruptive. To date, methods for automated pathway extraction have treated 
missense mutations either as disruptive or neutral to protein activity, however it is well established 
that distinct amino acid sites within a protein mediate different functions. Simply modeling 
proteins as active or not may detract from the biological relevance of extracted pathways. 

Recently, several groups have published high-resolution three-dimensional (3D) PPI 
networks8-10 that include the molecular details of binding interfaces. Applications of these to 
investigate inherited disease mutations11-15 have suggested that a) nsSNVs located at protein 
interfaces result in distinct phenotypes from those located in the protein core9,10, b) known disease 
associated variants outside of the core are enriched at residues participating in protein interaction 
interfaces10 c) in particular, in-frame disease mutations are enriched at interface regions of 
interacting proteins9 and d) disease mutations at distinct interfaces of the same protein can be 
associated with distinct disease phenotypes9. In cancer, 3D location of mutations at an interface 
has served as evidence that protein interactions may be important for metastasis site determination. 
11 These observations suggest that distinct changes to the network topology of protein interaction 
networks will result in different phenotypes. Thus efforts to identify disease-associated pathways 
may need to account for mutation-specific effects to the PPI network. 

Here, we investigate the extent to which distinct somatic mutations observed in known cancer 
genes have distinct phenotypic consequences. We present a structure-guided sub-network 
extraction pipeline (Figure 1) that identifies protein sets associated with specific missense 
mutations. We divide mutations observed in tumor exome sequencing data from The Cancer 
Genome Atlas (TCGA) into two categories: core and interface, then use structurally resolved 
protein interaction data to model the effects of mutations on PPI network topology. Then using a 
diffusion-based approach, we identify distinct sets of interacting proteins in the global interaction 
network associated with different residue alterations of the same cancer gene and show that in 
many cases, these protein sets are implicated in distinct biological activities.  

 
 
 
 
 
 
 
 
 

 
Figure 1. A pipeline for mining molecular cancer related sub-networks accounting for different effects of distinct 
mutations. Steps include network assembly (a), mapping of mutations to interface versus core residues of cancer genes 
(b ), removal of affected edges (c), extraction of associated protein sets (d & e) and functional annotation (f). 
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2. Materials and Methods  

2.1 Sources of Protein Interaction Data  

We assembled a highly reliable set of human PPIs from STRING16, HINT17 and the Protein Data 
Bank (PDB)18 (Figure 1a). The respective contributions were 57985 interactions among 10211 
proteins from STRING v.9.1 with experimental support and a confidence score higher than 0.4, 
24523 interactions involving 8126 proteins from HINT, and 11583 physical interactions between 
1653 proteins from the PDB. After eliminating self-interactions, our network comprises of 74699 
interactions among 11951 proteins.  

2.2 Cancer Genes 

We investigated mutations in 125 genes implicated by Vogelstein et al.’s1 as driving 
tumorigenesis. Of these genes, 123 were present in our human PPI, participating in 7503 
interactions. Ninety-seven of the encoded proteins had structural entries in the PDB, and 59 had 
PDB structures in complex with one or more binding partners, resulting in a total of 169 
structurally resolved interaction interfaces (Figure 1a). 

2.3 Source of Mutation Data 

The TCGA mutation data (merged results of MutSig v2.0 and MutSigCV v0.9) was downloaded 
from the 01/15/2014 Firehose release (http://gdac.broadinstitue.org). Only missense mutations 
were considered in this analysis.  

2.4 Mapping Mutations to Protein Structure 

2.4.1 From DNA Sequence Position to Structural Position 

In order to determine the three-dimensional location of mutated residues, chromosomal 
coordinates of nsSNVs were mapped onto to PDB coordinates. Chromosomal coordinates were 
mapped to transcripts in Gencode1919 using psl format files downloaded from the UCSC Genome 
Browser20. UniProt proteins were aligned to transcripts in Gencode19 using tblastn21 software. 
Lastly, we performed the Uniprot to PDB mapping with the PDBSWS22 server. 

2.4.2 Designating Interface and Core Residues 

We classified nsSNVs into two groups depending on their structural location: core or interface. To 
designate a residue as participating in a protein interaction interface, we used the consensus of 
interface predictions made by the HotPoint23 and KFC224  servers to identify residues in physical 
contact. We removed incomplete interfaces by discarding interactions with fewer than 5 residues 
in at least one of the interacting chains. We used NACCESS25 to calculate the accessible surface 
area (ASA) of all protein residues. Residues with an ASA of 0 were classified as core. 
 
2.4.3 Positioning Mutation Data on Protein Structure 
We obtained core residue positions for 97 of the proteins encoded by cancer genes and positions at 
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interfaces for 169 interactions between these proteins and their partners. In total there were 398 
mutations located at either core or interface residues of cancer genes (Figure 1b). We made the 
simplifying assumption that mutations mapping to the same interface are likely to affect it in the 
same way. Thus we select a single representative mutated residue for each interface. Because we 
are interested in differential functional consequences of mutations in the same protein, we focused 
on genes with at least 2 mutations in different locations (i.e. different interfaces or core and 
interface mutations). This reduced our list to 137 distinct events in 43 cancer genes 
(Supplementary Table 1). 

2.5 Network Perturbation  

If a mutation occurs in the protein core we assume that all of the protein’s interactions are affected 
(Figure 2b), and if it occurs at an interface, only the interactions mediated by the interface are 
affected (Figure 2c). To implement these perturbations, we removed edges from our structurally 
resolved PPI network corresponding to the affected interactions  (Figure 1c). 
 
 
 
 
 
 
 
 

 
Figure2. Modeling mutations as network perturbations. a) The unaltered protein-protein interactions of a wild type 
protein, b) a core mutation has the tendency to destabilize the protein. We depict this phenomenon by removing all 
edges involving the protein c) an interface mutation may affect some of the interactions of a protein. In this case we 
remove the potentially affected edges of the protein from the network. 

2.6 Network Propagation Algorithm  

We used network propagation26 to implicate protein sets most likely to be affected by each 
mutation (Figure 1d).  This method has been applied to the related problem of clustering of 
patients based on somatic mutation profiles by Hofree et al.7, and uses a random walk (with 
restarts) according to the function in Eq.(1). 

!!!! = !!!!!!+ (!− !)!!                                              (1) 
!! is a binary vector with size equal to the number of proteins in the network. Mutated cancer 

genes are set to 1, representing ‘heat sources’, while other proteins are initialized to 0. The 
!!matrix is the degree normalized adjacency matrix of the PPI network. The ! parameter affects 
the distance that the heat signal propagates during the diffusion. The distribution of the propagated 
values was similar for different ! values and the choice of this parameter had limited impact on the 
results within the range of [0.4-0.7], as was previously reported.26 We used 0.4 as the!! parameter.  

In order to avoid numerical inaccuracy issues, the propagation algorithm is solved by iterative 
use of equation (1) until convergence (i.e. the sum of absolute differences between elements of 

Pacific Symposium on Biocomputing 2015

87

 B
io

co
m

pu
tin

g 
20

15
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 1

69
.2

28
.1

88
.1

24
 o

n 
09

/1
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



!!!! and !!!is smaller than !"!!). The algorithm returns !!, which contains a value for each node 
in the network proportional to the expected number of times the node is visited during a random 
walk originating from the heat source, and restarting at the heat source with probability !. 

2.7 The Differential Heat Profiles  

We performed network propagation for each of the 137 representative mutations separately. For 
each mutation, we calculated !! vectors for the unaltered network and the perturbed network. For 
subsequent analysis steps (protein module detection and functional annotation), we used the 
differential heat profiles, obtained by subtracting the Ft values for each gene in the unaltered and 
perturbed networks.  
As methods used in this analysis are sensitive to differences in scale differential heat profiles were 
aggregated into a mutation x gene matrix and quantile normalized using the “preprocessCore” 
package of Bioconductor27 for R 28.  

2.8 Sub-network Extraction 

We used an approach similar to that used by the HotNet5 method to identify altered sub-networks 
in our global PPI from the differential heat profiles for the 137 mutations (Figure 1e). First, each 
edge was assigned the minimum heat value of the corresponding protein pair. Edges were then 
sorted by heat value and the top 10th percentile of edges were extracted. Next, we executed our 
pipeline for 1000 random mutations with similar consequences to those observed in the TCGA 
data (390 core and 610 interface affecting 1-10 edges). We removed edges that had differential 
heat scores in the top 10th percentile in over 5% of the random runs as these edges likely resulted 
from the underlying topology of our PPI network rather than the perturbation of interest. This 
procedure resulted in a set of connected components for each of the 137 mutations, representing 
mutation-specific candidate cancer pathway genes. 

2.9 Functional Annotation 

We used David29 to annotate the gene sets in the mutation-specific connected components from the 
GO Biological Process data set30. For each cancer gene, functional annotations were divided into 
those common to all mutations and those specific to particular mutations (Figure 1f).    

3. Results and Discussions 

3.1 A Pipeline to Extract Mutation-Specific Pathways 

We constructed a pipeline (Figure 1) for mining and annotating cancer related protein sets from 
somatic mutation data while accounting for mutation-specific network perturbations. We applied 
this pipeline to analyze mutations observed in 125 frequently mutated cancer genes, where the vast 
majority of observed mutations are likely to be cancer causing driver mutations. Our pipeline can 
be applied to mutations in any gene, however for genes not known to drive tumorigenesis, efforts 
should be made to discriminate between causal driver and non-causal passenger events. 
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3.2 Mutational Distribution in Cancer Genes 

We investigated the spatial distribution of somatic missense mutations on 125 cancer genes using 
individual crystal structures and co-crystallization of the encoded proteins with interaction 
partners. We then incorporated these structural data into a larger network of experimentally 
validated PPIs. We note that because these 125 genes are well studied, there is a positive bias 
towards data availability relative to other genes in the human interactome. Nonetheless, only 59 of 
the 125 proteins had structural complexes in the PDB that included an interaction partner. Despite 
this, co-crystallization of the 59 driver genes with interaction partners covered fully 6% of the 
experimentally validated protein interactions (Supplementary Table 2).  

In order to assess the extent of structural diversity of missense mutations observed across 
known cancer genes, we mapped mutations to core and interface regions. We observed that cancer 
gene encoded proteins for which co-crystallization structures are available harbor mutations at an 
average of 2.5 distinct sites (Supplementary Table 2). Of core and interface sites observed to 
harbor mutations, 21% demonstrated tissue specificity (Fisher’s Exact test, Bonferroni corrected p 
–value < 0.05) (Supplementary Table 3). In particular, 4 cancer genes showed significant 
differences in mutation counts at distinct sites in different cancer types. These observations suggest 
that the physical location of mutations in known cancer genes may have functional significance. 

3.3 Determining the Altered Sub-networks and Their Functionality 

To identify perturbed network modules in the global network, we applied a HotNet-like method 
(section 2.8) to the differential heat profiles obtained for missense mutations at protein core or 
interface residues. We focused on cancer genes with mutations mapping to multiple distinct 
locations likely to have different functional consequences. Filtering redundant mutations (those 
occurring at residues in the same protein core or interface), we retained 137 mutations for 43 
cancer genes. These 137 events returned an average of 56 altered sub-networks derived from an 
average of 686 proteins (Supplementary Table 4). We annotated the resulting sub-networks from 
the GO Biological Process database, and found that all 43 cancer genes harbored events that 
implicated specific functional consequences. Published events were consistent with our functional 
annotations for sites in APC, ATRX, BRCA1, CBL and HRAS via literature search (Section 4 and 
Supplementary Table 5). For this purpose we assumed mutagenesis experiments reported for 
other residues at the same interface or core would be equivalent to the events we modeled.  

3.4 HRAS Case Study: Implicated Sub-Networks and Functions 

The RAS family oncogenes, KRAS, HRAS and NRAS were among the first discovered 
oncogenes, and are frequently mutated across a variety of human cancers. These genes regulate 
cell proliferation, differentiation and survival31 via interaction with a number of different protein 
targets. Amino acid substitutions occurring on these 3 genes disturb signaling through these 
pathways and lead to tumorigenesis.  

In our current network, we have structurally resolved interfaces for HRAS binding to RASA1 
and SOS1, but not for KRAS and NRAS. Given the high degree of similarity among RAS proteins, 
and various experimental findings that support similar functional capabilities 32, the model we 
present here for HRAS likely generalizes to KRAS and NRAS as well.  
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Among TCGA patients we observe four amino acid substitutions localizing to protein-binding 
interfaces on RAS proteins (G12 in 6 patients, G13 in 8 patients, A59 in 1 patient and Q61 in 21 
patients) and no mutations affecting the protein core (Figure 3). By superimposing the RASA1 – 
HRAS (PDB ID: 1WQ1) and SOS1 – HRAS (PDB ID: 1BKD) complexes, we observed that these 
two interactors utilize the same binding site on HRAS. Physical distance between residues in co-
crystalized structures implicated three residues in interactions with RASA1 (residues 12, 13 and 
61) and SOS1 (residues 13, 59 and 61) respectively. This suggests that neighboring residues 12-13 
and 59-61 participate in different interactions. Mutations at residues 12 and 13 have been observed 
to have prognostic and therapeutic differences. For example, KRAS G13 mutated colorectal 
cancers show some response to cetuximab, while G12 mutated cancers do not respond or may even 
progress more rapidly33. We applied our pipeline to each mutated interface, resulting in predictions 
for mutations altering signaling through RASA1(HRAS G12), signaling through SOS1 (HRAS 
A59) or both simultaneously(HRAS G13/Q61).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure3. The RASA1–HRAS complex (a) and  the SOS1–HRAS complex (b) show that both interactors utilize the 
same binding site on HRAS. Residues 12, 13, 59 and 61 on HRAS that participate in the interface region of these 
interactions are highlighted in blue. Residue 12 mediates the HRAS-RASA1, residue 59 mediates the HRAS-SOS1 
interaction, and 13 and 61 participate in both interactions. The small network (c) provides a schematic of the residues 
mediating particular interactions. The grey nodes represent the residues. Their sizes are proportional to the frequency 
with which they are mutated in the TCGA cohort. Functions predicted to be specifically altered by mutations at each 
interface are listed on the edges. 

3.4.1 HRAS G12 alterations  

G12 mutations in HRAS returned protein modules involved in GTPase activity, cytokine 
production, vasculogenesis, blood coagulation, endothelial cell differentiation/proliferation and 
smooth muscle cell proliferation/migration (Supplementary Table 6). Evidence suggests that 
these functions may be linked. Inappropriate blood coagulation is frequently observed in cancer 
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patients and is closely related to tumor growth34. Vasculogenesis, which  involves proliferation, 
migration and remodeling of endothelial cells, have been found to be related with tumor 
recurrence35. Chemokines play an important role in the behavior of endothelial cells during vessel 
formation36. Vascular smooth muscle cells provide homeostatic control and protect newly formed 
vessels against rupture and regression via inhibition of endothelial cell proliferation and 
migration37. Oncogenic HRAS G12 is known to stimulate chemokine secretion38, cause VGEF 
activation and endothelial cell apoptosis39, and is thought to be essential for solid tumor 
maintanence37. Furthermore, VEGF (Entrez Gene ID: 7422), one of the prominent molecules that 
control vasculogenesis, is present in the protein set (Supplementary Table 7) implicated by the 
HRAS G12 mutation. Amino acid changes at HRAS G12 have been shown to affect the strength of 
GTPase activity and binding to GTP40.  

3.4.2 HRAS G13/Q61 alterations 

Residues G13 and Q61, which participate in a common binding site on HRAS, mediate 
interactions with both RASA1 and SOS1 and are frequently mutated in cancer. GO analysis of the 
protein modules implicated by these residues found functional enrichment for response to UV light 
(Supplementary!Table 8-9). Even though there is an extensive body of evidence supporting the 
connection between UV radiation and melanoma41-43, the exact mechanism remains unclear. Yang 
et al44 proposed a possible mechanism that drives melanoma photocarcinogenesis through KRAS 
Q61 mutagenesis. Besides, its shown that UV-radiation has a bias towards targeting pyrimidine 
dimers that more frequently lead to RAS Q61 mutations45. 

3.4.3 HRAS A59 alterations  

Mutations at HRAS A59 exclusively affect the SOS1 interaction. When analyzed with our model, 
the implicated proteins were involved in GPCR signaling.  (Supplementary Table 10-11). RAS 
activation is catalyzed by guanine nucleotide exchange factors (GEFs) which include GPCRs. On 
the other hand SOS146 acts as a GEF for HRAS. SOS1 forms a complex with GRB2 that is 
obligatory for GPCR-mediated RAS activation. Since these proteins are tightly bound to each 
other, when the interaction between SOS1 and HRAS is hindered, it is not unexpected to see 
GPCR signaling as an altered pathway. 

4. Additional Validation 

We assessed two mutated residues affecting interactions between APC and KHDRBS1 (res640) 
and CTNNB1 (res1527) respectively. Consistent with the published finding that the R640G of 
APC causes exon 14 skipping by disrupting ASF/SF2 binding47, our functional annotations 
included mRNA splice related activities and the implicated protein set included ASF/SF2. In 
contrast, functional annotations specific to the res1527 perturbation included a number of nervous 
system related activities, such as “neuron apoptosis” and “negative regulation of neuron 
differentiation”. In the literature, mutations at codon 1495 which is also at the CTNNB1 interface 
have been observed in Medulloblastoma48.  

Mutated residues at positions 220 and 263 map to the core of ATRX and an interface that 
mediates binding to members of the Histone H3 family, H3F3A and HIST1H3A, respectively.  
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ATRX has been implicated in chromatin remodeling and regulation of gene expression. The 
ATRX ADD domain and HP1 are required for ATRX localization to heterochromatin. Mutation 
E218A reduces pericentromeric localization of ATRX without disturbing the stability of the ADD 
domain49. H3 tails bearing tri-methylated Lys9 (H3-K9) are also required for ATRX localization 
via the ADD domain50. Annotations for residue 263 were specific to histone H4-K acetylation, 
while the ATRX core mutations, which presumably destabilize the protein, returned histone H3-K9 
methylation. This is consistent with the ADD domain being unaffected by the interface mutations.    

We evaluated residues affecting BRCA1’s interactions with BRIP1 (res1813,res1699) and 
BARD1 (res96). The BRCA1–BRIP1–TOPBP1 complex is associated with DNA repair during 
replication and is essential for the S-phase checkpoint in response to collapsed replication forks.51 
The mutated residues affecting BRCA1 and BRIP1 interactions returned related terms including 
“DNA repair”, “maintenance of fidelity during DNA-dependent DNA replication”, and “DNA 
replication checkpoint and replication fork protection”. Weakening of the BRCA1–BARD1 
interaction due to ionizing radiation leads to the induction of p21 and initiation of the G1/S 
checkpoint52. Our annotations for this included “DNA damage response, signal transduction by 
p53 class mediator resulting in transcription of p21 class mediator”. In addition, of 10 BRCA1 
mutations found to be functional by Carvalho et al.53, 7 mapped to interface or core residues with 
our pipeline. 

CBL’s interfaces with UBE2D2 (res418, res417, res384) and EGFR (res322) were observed to 
harbor mutations in TCGA samples. CBL residue R420 is involved in ubiquitination54 and the 
G298E mutation was shown to abolish NFAT activation55. Consistent with these findings, our 
annotations specific to the UBE2D2 interface included terms related to unbiquitination, while 
annotations specific to the EGFR interaction included T-cell activation and, NFAT activation 
molecule 1 was present in the protein set. 

5. Conclusions 

We describe here our efforts to incorporate information about the differential consequences of 
somatic mutations in the same protein for extracting cancer pathways from large tumor ‘omics data 
sets. Although there is limited structural knowledge available for PPIs, what exists provides strong 
evidence for specific functional consequences of mutations at distinct sites within the same 
protein. Among 59 proteins with sufficient structural data, 43 had mutations with specific 
functional annotations. Despite the paucity of functionally characterized missense mutations in 
databases and literature, we were able to find supporting evidence in the literature for mutated sites 
on 6 genes of the 43 genes. A case study investigating the mutation consequences for distinct 
interactions of HRAS further highlights that biological processes associated with each event can be 
specific and may have phenotypic relevance to the patient. For more systematic validation, 
experimental assays could be designed to validate predictions of our method, guided by the 
implicated protein sub-networks and the associated annotations. In aggregate, our findings suggest 
that perturbation to cancer pathways may in fact be mutation-specific and point to the need for 
analysis methods aware of tumor-specific network topologies.  

6. Supplementary Material 

http://chianti.ucsd.edu/perm/hcarter/psb2015/Supplementary_Material.docx 
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